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0. Introduction

The Fibonacci numbers was introduced by Leonardo of Pisa (1170-1240)
in his book Liber abbaci, book published in 1202 AD (see [Ko; 01], p. 1, 3).
These numbers was used as a model for investigate the growth of rabbit
populations (see [Dr, Gi, Gr, Wa; 03]). The Latin name of Leonardo was
Leonardus Pisanus, also called Leonardus filius Bonaccii, shortly Fibonacci.
This name is attached to the following sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, ....,

with the nth term given by the formula:

fn = fn−1 + fn−2, n ≥ 2,
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where f0 = 0, f1 = 1.
Fibonacci numbers was known in India before Leonardo’s time and used

by the Indian authorities on metrical sciences (see [Pa; 85], p. 230). These
numbers have many properties which was studied by many authors (see [Ho;
61], [Cu; 76], [Pa; 85], [Ko; 01]).

Narayana was an outstanding Indian mathematician of the XIV century.
From him came to us the manuscript ”Bidzhahanity” (incomplete), written
in the middle of the XIV century. For Narayana was interesting summation
of arithmetic series and magic squares. In the middle of the XIV century he
proved a more general summation. Using the following sums

1 + 2 + 3 + . . .+ n = S(1)
n ,

S
(1)
1 + S

(1)
2 + . . .+ S(1)

n = S(2)
n ,

S
(2)
1 + S

(2)
2 + . . .+ S(2)

n = S(2)
n , . . . ,

Narayana calculated that

S(m)
n =

n(n + 1)(n+ 2) . . . (n+m)

1 · 2 · 3 · . . . · (m+ 1)
. (*)

Narayana applied its rules to the problem of a herd of cows and heifers
(see [Yu; 61], [Si; 36], [Si; 85], [Al, Jo; 96 ]).

Narayana problem ([Al, Jo; 96 ]). A cow annually brings heifers. Every
heifer, beginning from the fourth year of his life also brings heifer. How many
cows and calves will be after 20 years?

Narayana’s calculation is in the following:
1) a cow within 20 years brings 20 heifers of the first generation;
2) the first heifer of the first generation brings 17 heifers second genera-

tion, the second heifer of the first generation brings 16 heifers second gener-
ation etc. The total in the second generation will be 17+ 16+ . . .+ 1 = S

(1)
17

cows and calves;
3) the first heifer of the seventeen heifers of the second generation brings

14 heifers of the third generation, the second heifer of the seventeen heifers
of the second generation brings 13 heifers of third generation, etc. The total
heifers of the first generation bring 13 + 12 + . . .+ 1 = S

(1)
13 heads. Now, all

heifers of the second generation brings S
(1)
14 + S

(1)
13 + . . . + S

(1)
1 = S

(2)
14 heads

in the third generation.
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Similarly, Narayana calculated total number in the herd after 20 years:

n = 1 + 20 + S
(1)
17 + S

(2)
14 + . . .+ S

(6)
2 .

Using formula (*), he obtained:

n = 1 + 20 +
17 · 18
1 · 2 +

14 · 15 · 16
1 · 2 · 3 +

2 · 3 · 4 · 5 · 6 · 7 · 8
1 · 2 · 3 · 4 · 5 · 6 · 7 = 2745.

This problem can be solved in the same way that Fibonacci solved its
problem about rabbits (see [Ka; 04], [Ko; 01], [Si; 36], [Si; 85]).

In the beginning of the first year was 1 cow and 1 heifer which born. That
is had 2 heads. In the beginning of the second year and in the beginning of
the third year the number of heads increased by one. Therefore the number
of heads are 3 and 4, respectively. From the fourth year, the number of heads
in the herd is defined by recurrence formulae:

x4 = x3 + x1, x5 = x4 + x2, . . . , xn = xn−1 + xn−3,

since the number of cows for any year is equal with the number of cows of
the previous year plus the number of heifers which was born (= number of
heads that were three years ago) (see [Al, Jo; 96 ]).

We have the sequence

2, 3, 4, 6, 9, . . . , un+1 = un + un−2.

Computing, we obtain that u20 = 2745 (see [Ka; 04], [Ko; 01], [Si; 36], [Si;
85], [Al, Jo; 96 ]).

Now, we can consider the sequence

1, 1, 1, 2, 3, 4, 6, 9, . . . , un+1 = un + un−2,

with n ≥ 2, u0 = 0, u1 = 1, u2 = 1. These numbers are called the Fibonacci-
Narayana numbers (see [Di, St; 03]).

In the same paper [Di, St; 03], authors proved some basic properties of
Fibonacci-Narayana numbers, namely:

1) u1 + u2 + . . .+ un = un+3 − 1.
2) u1 + u4 + u7 + . . .+ u3n−2 = u3n−1.
3) u2 + u5 + u8 + . . .+ u3n−1 = u3n.
4) u3 + u6 + u9 + . . .+ u3n = u3n+1 − 1.
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5) un+m = un−1um+2 + un−2um + un−3um+1.
6) u2n = u2

n+1 + u2
n−1 − u2

n−2.
7) If in the sequences {un}, n = 7k + 4, n = 7k + 6, n = 7k, when

k = 0, 1, 2, . . ., then un is even.
8) If in the sequences {un} n = 8k, n = 8k − 1, n = 8k − 3, when

k = 0, 1, 2, . . ., then 3 | un.
Another property of Fibonacci-Narayana numbers was proved in [Sh; 06].
For all natural n ≥ 2, we have

un =

[n/3]
∑

m=0

∁m[n/3]un−[n/3]−2m,

where [a] is an integer part of a and ∁kn = n!
k!(n−k)!

, k! = 1 · 2 · 3 · ... · k, k ∈ N.

Let H (β1, β2) be the generalized real quaternion algebra, the algebra of
the elements of the form a = a1 · 1 + a2e2 + a3e3 + a4e4, where ai ∈ R, i ∈
{1, 2, 3, 4}, and the basis elements 1, e2, e3, e4 satisfy the following multipli-
cation table:

· 1 e2 e3 e4
1 1 e2 e3 e4
e2 e2 −β1 e4 −β1e3
e3 e3 −e4 −β2 β2e2
e4 e4 β1e3 −β2e2 −β1β2

We denote by t (a) and n (a) the trace and the norm of a real quaternion
a. The norm of a generalized quaternion has the following expression n (a) =
a21+β1a

2
2+β2a

2
3+β1β2a

2
4. For β1 = β2 = 1, we obtain the real division algebra

H.

1. Preliminaries

In the present days, several mathematicians studied properties of the
Fibonacci sequence. In [Ho; 61], the author generalized Fibonacci numbers
and gave many properties of them:

hn = hn−1 + hn−2, n ≥ 2,
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where h0 = p, h1 = q, with p, q being arbitrary integers. In the same paper
[Ho; 61], relation (7), the following relation between Fibonacci numbers and
generalized Fibonacci numbers was obtained:

hn+1 = pfn + qfn+1. (1.1)

The same author, in [Ho; 63], defined and studied Fibonacci quaternions and
generalized Fibonacci quaternions in the real division quaternion algebra and
found a lot of properties of them. For the generalized real quaternion algebra,
the Fibonacci quaternions and generalized Fibonacci quaternions are defined
in the same way:

Fn = fn · 1 + fn+1e2 + fn+2e3 + fn+3e4,

for the nth Fibonacci quaternions, and

Hn = hn · 1 + hn+1e2 + hn+2e3 + hn+3e4,

for the nth generalized Fibonacci quaternions.
In the same paper, we find the norm formula for the nth Fibonacci

quaternions:

n (Fn) = FnF n = 3f2n+3, (1.2)

where F n = fn · 1 − fn+1e2 − fn+2e3 − fn+3e4 is the conjugate of the Fn in
the algebra H. After that, many authors studied Fibonacci and generalized
Fibonacci quaternions in the real division quaternion algebra giving more
and surprising new properties (for example, see [Sw; 73], [Sa-Mu; 82] and
[Ha; 12]).

M. N. S. Swamy, in [Sw; 73], formula (17), obtained the norm formula
for the nth generalized Fibonacci quaternions:

n (Hn) = HnHn =

= 3(2pq − p2)f2n+2 + (p2 + q2)f2n+3,

where Hn = hn · 1− hn+1e2 − hn+2e3 − hn+3e4 is the conjugate of the Hn in
the algebra H.

Similar to A. F. Horadam, we define the Fibonacci-Narayana quaternions
as

Un = un · 1 + un+1e2 + un+2e3 + un+3e4,

5



where un are the nth Fibonacci-Narayana number.
In this paper, we give some properties of generalized Fibonacci quater-

nions and Fibonacci-Narayana quaternions.

2. Generalized Fibonacci Quaternions

As in the case of Fibonacci numbers, numerous results between Fi-
bonacci generalized numbers can be deduced. In the following, we will study
some properties of the generalized Fibonacci quaternions in the generalized
real quaternion algebra H (β1, β2). Let Fn = fn ·1+fn+1e2+fn+2e3+fn+3e4
be the nth Fibonacci quaternion and Hn = hn ·1+hn+1e2+hn+2e3+hn+3e4
be the nth generalized Fibonacci quaternion. A first question which can
arise is what algebraic structure have these elements? The answer will be
found in the below theorem, denoting first a nth generalized Fibonacci num-
ber and a nth generalized Fibonacci element with hp,q

n , respectively Hp,q
n . In

this way, we emphasis the starting integers p and q.

Theorem 2.1. The set Hn = {Hp,q
n / p, q ∈ Z} ∪ {0} is a Z−module.

Proof. Indeed, aHp,q
n + bHp′,q′

n = Hap+bp′,aq+bq′

n ∈ Hn, where
a, b, p, q, p′, q′ ∈ Z.�

Theorem 2.2. i) For the Fibonacci quaternion elements, we have

n
∑

m=1

(−1)m+1 Fm = (−1)n+1 Fn−1 + 1 + e3 + e4. (2.1)

ii) For the generalized Fibonacci quaternion elements, the following rela-
tion is true

n
∑

m=1

(−1)m+1 Hp,q
m = (−1)n+1Hp,q

n−1 − p+q+pe2+qe3+pe4+qe4 (2.2)
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Proof.
i) From [Cu; 76], we know that

n
∑

m=1

(−1)m+1 fm = (−1)n+1 fn−1 + 1. (2.3)

It results:
n
∑

m=1

(−1)m+1 Fm=

=
n
∑

m=1

(−1)m+1 fm+e2
n
∑

m=1

(−1)m+1 fm+1+

+e3
n
∑

m=1

(−1)m+1 fm+2+e4
n
∑

m=1

(−1)m+1 fm+3=

=(−1)n+1fn−1 + 1− e2[(−1)n+1fn−1 + (−1)n+2 fn+1]+
+e3

[

(−1)n+1 fn−1 + 1 + (−1)n fn+1 + (−1)n+1 fn+2

]

−
−e4[(−1)n+1 fn−1 − 1 + (−1)n+2 fn+1 + (−1)n+3 fn+2 + (−1)n+4 fn+3]=
=(−1)n+1fn−1 + 1 + (−1)n+1 e2fn + e3 (−1)n+1 [fn+1 + (−1)n+1]−
−e4 (−1)n+1 [−fn+2 − (−1)n+1] =

= (−1)n+1 (fn−1 + fne2 + fn+1e3 + fn+2e4) + 1 + e3 + e4 =
= (−1)n+1 Fn−1 + 1 + e3 + e4.

ii) Using relations (1.1) and (2.3) ,we have
n
∑

m=1

(−1)m+1Hp,q
m =

=
n
∑

m=1

(−1)m+1 hp,q
m +e2

n
∑

m=1

(−1)m+1 hp,q
m+1+

+e3
n
∑

m=1

(−1)m+1 hp,q
m+2+e4

n
∑

m=1

(−1)m+1 hp,q
m+3 =

=
n
∑

m=1

(−1)m+1 pfm−1 +
n
∑

m=1

(−1)m+1 qfm+

+e2
n
∑

m=1

(−1)m+1 pfm + e2
n
∑

m=1

(−1)m+1 qfm+1+

+e3
n
∑

m=1

(−1)m+1 pfm+1 + e3
n
∑

m=1

(−1)m+1 qfm+2+

+e4
n
∑

m=1

(−1)m+1 pfm+2 + e4
n
∑

m=1

(−1)m+1 qfm+3 =

= p (−1)n+1 fn−2 − p+ q (−1)n+1 fn−1 + q+
+e2p (−1)n+1 fn−1 + pe2 + e2q

[

(−1)n+1 fn+1 − (−1)n+1 fn−1

]

+

+e3p
[

(−1)n+1 fn+1 − (−1)n+1 fn−1

]

+

7



+e3q
[

(−1)n+1 fn−1 + 1 + (−1)n fn+1 + (−1)n+1 fn+2

]

+

+e4p
[

(−1)n+1 fn−1 + 1 + (−1)n fn+1 + (−1)n+1 fn+2

]

−
−e4q[(−1)n+1 fn−1 − 1 + (−1)n+2 fn+1 + (−1)n+3 fn+2 + (−1)n+4 fn+3] =
= p (−1)n+1 fn−2 − p+ q (−1)n+1 fn−1 + q+
+e2p (−1)n+1 fn−1 + pe2 + e2q (−1)n+1 fn + e3p (−1)n+1 fn+
+e3q (−1)n+1 [fn−1 + (−1)n+1 − fn+1 + fn+2]+
+e4p (−1)n+1 [fn−1 + (−1)n+1 − fn+1 + fn+2

]

−
−e4q (−1)n+1 [fn−1 − (−1)n+1 − fn+1 + fn+2 − fn+3

]

=

= p (−1)n+1 fn−2 − p+ q (−1)n+1 fn−1 + q+
+e2p (−1)n+1 fn−1 + pe2 + e2q (−1)n+1 fn + e3p (−1)n+1 fn+
+e3q (−1)n+1 [fn+1 + (−1)n+1]+ e4p (−1)n+1 [(−1)n+1 + fn+1]−
−e4q (−1)n+1 [−fn+2 − (−1)n+1] =

= (−1)n+1Hp,q
n−1 − p+ q + pe2 + qe3 + pe4 + qe4.�

From the above Theorem, we can remark that all identities valid for
the Fibonacci quaternions can be easy adapted in an approximative similar
expression for the generalized Fibonacci quaternions, if we use relation (1.1) ,
a true relation in the both algebras H (β1, β2) and H.

Proposition 2.3. If hn+1 = pfn + qfn+1 = 0, then we have:

H2
n+1=3

q2

f 2
n

[

f 2
2n+1 − fn+1fn−2f2n+2

]

, (2.4)

where H2
n+1 ∈ H (β1, β2) .

Proof. Since hn+1 = 0, it results that t (Hn+1) = hn+1 = 0, therefore
n (Hn+1) = H2

n+1. From hn = pfn + qfn+1 = 0, we have p = − qfn+1

fn
and

we obtain:

p2 + 2pq=
q2f 2

n+1

f 2
n

− 2q2
fn+1

fn
=− q2fn+1fn−2

f 2
n

and

p2 + q2=
q2f 2

n+1

f 2
n

+ q2=q2
f 2
n+1 + f 2

n

f 2
n

= q2
f2n+1

f 2
n

,

since f 2
n+1 + f 2

n = f2n+1.
It results

n (Hn+1)=3[(p2 + 2pq)f2n+2+(p2 + q2)f2n+1]=

=3 q2

f2
n

[−fn+1fn−2f2n+2 + f 2
2n+1].�
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In the following, we will compute the norm of a Fibonacci quaternion and
of a generalized Fibonacci quaternion in the algebra H (β1, β2) .

Let Fn = fn ·1+fn+1e2+fn+2e3+fn+3e4 be the nth Fibonacci quaternion,
then its norm is

n (Fn) = f 2
n + β1f

2
n+1 + β2f

2
n+2 + β1β2f

2
n+3.

Using recurrence of Fibonacci numbers and relations

f 2
n + f 2

n−1 = f2n−1, n ∈ N, (2.5)

f2n = f 2
n + 2fnfn−1, n ∈ N, (2.6)

from [Cu; 76], we have
n (Fn) = f 2

n + β1f
2
n+1 + β2f

2
n+2 + β1β2f

2
n+3 =

= f 2
n + β1f

2
n+1 + β2

(

f 2
n+2 + β1f

2
n+3

)

=
= f2n+1 + (β1 − 1) f 2

n+1 + β2

(

f2n+5 + (β1 − 1)f 2
n+3

)

=
= f2n+1 + β2f2n+5 + (β1 − 1)

(

f 2
n+1 + β2f

2
n+3

)

=
= (1 + 2β2) f2n+1 + 3β2f2n+2 + (β1 − 1)

(

f 2
n+1 + β2f

2
n+3

)

=

= h1+2β2,3β2

2n+2 + (β1 − 1)
(

f 2
n+1 + β2f

2
n+3

)

=

= h1+2β2,3β2

2n+2 + (β1 − 1) (f2n+2 − 2fnfn+1 + β2f2n+6 − 2β2fn+2fn+3) =

= h1+2β2,3β2

2n+2 + (β1 − 1)[f2n+2 + β2f2n+6 − 2 (fnfn+1 + β2fn+2fn+3)] =

= h1+2β2,3β2

2n+2 +(β1 − 1)[f2n+2+β2f2n+6 − 2
(

fnfn+1+β2f
2
n+2+β2fn+1fn+2

)

=

= h1+2β2,3β2

2n+2 +(β1-1)[f2n+2+β2f2n+6-2
(

fnfn+1+β2f
2
n+2+βf 2

n+1+β2fnfn+1

)

=

= h1+2β2,3β2

2n+2 +(β1 − 1)[f2n+2+β2f2n+6 − 2 (1 + β2) fnfn+1 − 2β2f2n+3] =

= h1+2β2,3β2

2n+2 +(β1-1)[f2n+2+β2f2n+4+β2f2n+3+β2f2n+4−
−2β2f2n+3-2 (1+β2) fnfn+1] =
= h1+2β2,3β2

2n+2 +(β1-1)[f2n+2 + 2β2f2n+4 − β2f2n+3-2 (1+β2) fnfn+1] =

= h1+2β2,3β2

2n+2 +(β1-1)[f2n+2 + 2β2f2n+2 + 2β2f2n+3−
−β2f2n+3-2 (1+β2) fnfn+1] =
= h1+2β2,3β2

2n+2 +(β1-1)[(1 + 2β2) f2n+2 + β2f2n+3-2 (1+β2) fnfn+1] =

= h1+2β2,3β2

2n+2 +(β1-1)[h
1+2β2,β2

2n+3 − 2 (1+β2) fnfn+1] =

= h1+2β2,3β2

2n+2 +(β1-1)h
1+2β2,β2

2n+3 − 2(β1-1) (1+β2) fnfn+1.

We just proved

Theorem 2.4. The norm of the nth Fibonacci quaternion Fn in a gen-
eralized quaternion algebra is

n (Fn)=h1+2β2,3β2

2n+2 +(β1-1)h
1+2β2,β2

2n+3 -2(β1-1) (1+β2) fnfn+1. (2.7)

9
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Using the formula (2.7) and the relation (1.1) when β1 = β2 = 1, we
obtain the formula (1.2).

Using the above theorem and relations (2.5) and (2.6) , we can compute
the norm of a generalized Fibonacci quaternion in a generalized quaternion
algebra. Let Hn = hn · 1 + hn+1e2 + hn+2e3 + hn+3e4 be the nth generalized
Fibonacci quaternion. The norm is

n (Hp,q
n )=h2

n+β1h
2
n+1+β2h

2
n+2+β1β2h

2
n+3=

=(pfn−1+qfn)
2+β1 (pfn+qfn+1)

2+β2 (pfn+1+qfn+2)
2+

+β1β2 (pfn+2+qfn+3)
2 =

= p2
(

f 2
n−1 + β1f

2
n + β2f

2
n+1 + β1β2f

2
n+2

)

+
+q2

(

f 2
n + β1f

2
n+1 + β2f

2
n+2 + β1β2f

2
n+3

)

+
+2pq (fn−1fn + β1fnfn+1 + β2fn+1fn+2 + β1β2fn+3fn+2) =
= p2h1+2β2,3β2

2n +p2(β1-1)h
1+2β2,β2

2n+1 -2p2(β1-1) (1+β2) fn−1fn+

+q2h1+2β2,3β2

2n+2 +q2(β1-1)h
1+2β2,β2

2n+3 -2q2(β1-1) (1+β2) fnfn+1+
+2pq (1-β1) fnfn−1+2pqβ1f2n +2pqβ2 (1-β1) fn+1fn+2+2pqβ1β2f2n+4=
= p2h1+2β2,3β2

2n +p2(β1-1)h
1+2β2,β2

2n+1 + q2h1+2β2,3β2

2n+2 +q2(β1-1)h
1+2β2,β2

2n+3 −
−2p (β1 − 1) (pβ2 + p+ q) fn−1fn − 2q2(β1-1) (1+β2) fnfn+1+
+h2pqβ1,2pqβ1β2

2n+1 + 2pqβ1β2(f2n + f2n+3) + 2pqβ2 (1− β1) fn+1fn+2.

From the above, we proved

Theorem 2.5. The norm of the nth generalized Fibonacci quaternion
Hp,q

n in a generalized quaternion algebra is

n (Hp,q
n ) =p2h1+2β2,3β2

2n +p2(β1-1)h
1+2β2,β2

2n+1 +q2h1+2β2,3β2

2n+2 +q2(β1-1)h
1+2β2,β2

2n+3 -

−2p (β1 − 1) (pβ2 + p+ q) fn−1fn − 2q2(β1 − 1) (1+β2) fnfn+1 +

+ h2pqβ1,2pqβ1β2

2n+1 + 2pqβ1β2(f2n + f2n+3) + 2pqβ2 (1− β1) fn+1fn+2. (2.8)

�

It is known that the expression for the nth term of a Fibonacci element
is

fn =
1√
5
[αn − βn] =

αn

√
5
[1− βn

αn
], (2.9)

where α = 1+
√
5

2
and β = 1−

√
5

2
.

From the above, we can compute the following

lim
n→∞

n (Fn) = lim
n→∞

(f 2
n + β1f

2
n+1 + β2f

2
n+2 + β1β2f

2
n+3) =

10



= lim
n→∞

(
α2n

5
+β1

α2n+2

5
+β2

α2n+4

5
+β1β2

α2n+6

5
) =

n→∞

= sgnE(β1, β2) · ∞
where
E(β1, β2) = (1

5
+ β1

5
α2 + β2

5
α4 + β1β2

5
α6) =

= 1
5
(1 + β1 (α + 1) + β2 (3α+ 2) + β1β2 (8α+ 5)) =

= 1
5
[1 + β1 + 2β2 + 5β1β2 + α (β1 + 3β2 + 8β1β2)], since α2 = α+ 1.
If E(β1, β2) > 0, there exist a number n1 ∈ N such that for all

n ≥ n1 we have

h1+2β2,3β2

2n+2 + (β1 − 1)h1+2β2,β2

2n+3 − 2(β1 − 1) (1 + β2) fnfn+1 > 0.

In the same way, if E(β1, β2) < 0, there exist a number n2 ∈ N such that for
all n ≥ n2 we have

h1+2β2,3β2

2n+2 + (β1 − 1)h1+2β2,β2

2n+3 − 2(β1 − 1) (1 + β2) fnfn+1 < 0.

Therefore for all β1, β2 ∈ R with E(β1, β2) 6= 0, in the algebra H (β1, β2)
there is a natural number n0 = max{n1, n2} such that n (Fn) 6= 0, hence Fn

is an invertible element for all n ≥ n0. Using the same arguments, we can
compute

lim
n→∞

(n (Hp,q
n )) = lim

n→∞

(

h2
n + β1h

2
n+1 + β2h

2
n+2 + β1β2h

2
n+3

)

=

= lim
n→∞

[(pfn−1+qfn)
2+β1 (pfn+qfn+1)

2+β2 (pfn+1+qfn+2)
2+

+β1β2 (pfn+2+qfn+3)
2] =

= sgnE ′(β1, β2) · ∞
where
E ′(β1, β2) =

1
5
[(p+ αq)2 + β1 (pα + α2q)

2
+ β2 (pα

2 + α3q)
2
+

+β1β2 (pα
3 + α4q)

2
] =

= 1
5
(p+ αq)2 [1 + β1α

2 + β2α
4 + β1β2α

6] =

= 1
5
(p+ αq)2E(β1, β2).
Therefore for all β1, β2 ∈ R with E ′(β1, β2) 6= 0 in the algebra H (β1, β2)

there exist a natural number n′
0 such that n (Hp,q

n ) 6= 0, hence Hp,q
n is an

invertible element for all n ≥ n′
0.
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Now, we proved

Theorem 2.6. For all β1, β2 ∈ R with E ′(β1, β2) 6= 0, there exist a
natural number n′ such that for all n ≥ n′ Fibonacci elements Fn and
generalized Fibonacci elements Hp,q

n are invertible elements in the algebra
H (β1, β2) .�

Remark 2.7. Algebra H (β1, β2) is not always a division algebra, and
sometimes can be difficult to find an example of invertible element. Above
Theorem provides us infinite sets of invertible elements in this algebra,
namely Fibonacci elements and generalized Fibonacci elements.

3. Fibonacci-Narayana Quaternions

In this section, we will study some properties of Fibonacci-Narayana ele-
ments in the algebra H (β1, β2) .

Theorem 3.1. For the Fibonacci-Narayana quaternion Un, we have

a)
n

∑

m=0

Um = Un+3 − U2,

b)
n

∑

m=0

U3m = U3n+1 − 1− e4.

Proof. a)

n
∑

m=0

Um =

n
∑

m=0

um + e2

n+1
∑

m=1

um + e3

n+2
∑

m=2

um + e4

n+3
∑

m=3

um =

Since u0 = 0, we consider that the term
n
∑

m=0

um is equal with
n
∑

m=1

um. We

can use property 1) from Introduction and we obtain

= un+3 − 1 + e2(un+4 − 1) + e3(un+5 − 2) + e4(un+6 − 3) =

12



= Un+3 − (1 + e2 + 2e3 + 3e4) = Un+3 − U2.

b) Since u0 = 0, the term
n
∑

m=0

u3m is equal with
n
∑

m=1

u3m, therefore

n
∑

m=0

U3m =

n
∑

m=0

u3m + e2

n
∑

m=0

u3m+1 + e3

n
∑

m=0

u3m+2 + e4

n
∑

m=0

u3m+3 =

using properties 4), 2), 3), and again 4), we have

= u3n+1 − 1 + u3n+2e2 + u3n+3e3 + (u3n+4 − 1)e4 = U3n+1 − 1− e4.

�

Let {un} be a Fibonacci-Narayana sequence, and let Un = un ·1+un+1e2+
un+2e3 + un+3e4 be the nth Fibonacci-Narayana quaternion.

The function f(x) = a0+a1x+a2x
2+. . .+anx

n+. . . is called the generating
function for the sequence {a0, a1, a2, . . .}. In [Ha; 12], the author found a
generating function for Fibonacci quaternions. In the following theorem, we
established the generating function for Fibonacci-Narayana quaternions.

Theorem 3.2. The generating function for the Fibonacci-Narayana
quaternion Un is

G(t)=
U0+(U1-U0)t+(U2-U1)t

2

1− t− t3
=
e1+e2+e3+(1+e3)t+ (e2+e3)t

2

1− t− t3
. (3.1)

Proof. Assuming that the generating function of the quaternion

Fibonacci-Narayana sequence {Un} has the form G(t) =
∞
∑

n=0

Un t
n, we obtain

that
∞
∑

n=0

Unt
n − t

∞
∑

n=0

Unt
n − t3

∞
∑

n=0

Unt
n =

= U0 + U1t+ U2t
2 + U3t

3 + ...−
−U0t− U1t

2 − U2t
3 − U3t

4 − ...−
−U0t

3 − U1t
4 − U2t

5 − U3t
6 − .... =

= U0+(U1 − U0)t+(U2 − U1)t
2, since Un = Un−1 + Un−3, n ≥ 3 and the

coefficients of tn for n ≥ 3 are equal with zero.
It results

U0+(U1 − U0)t+(U2 − U1)t
2=

∞
∑

n=0

Unt
n (1− t− t3),
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or in equivalent form

U0+(U1 − U0)t+(U2 − U1)t
2

1− t− t3
=

∞
∑

n=0

Unt
n.

The theorem is proved. �

Theorem 3.3. (The Binet-Cauchy formula for Fibonacci-Narayana num-
bers) Let un = un−1 + un−3, n ≥ 3 be the nth Fibonacci-Narayana number,
then

un=
1

(α-β) (β-γ) (γ-α)

[

αn+1 (γ-β)+βn+1 (α-γ) +γn+1 (β-α)
]

, (3.2)

where α, β, γ are the solutions of the equation t3 − t2 − 1 = 0.

Proof. Supposing that un = Aαn+Bβn+Cγn, A, B, C ∈ C and using the
recurrence formula for the Fibonacci-Narayana numbers, un = un−1 + un−3,
it results that α, β, γ are the solutions of the equation t3 − t2 − 1 = 0. Since
u0 = 0, u1 = 1, u2 = 1, we obtain the following system







A+B + C = 0,
Aα +Bβ + Cγ = 1,

Aα2 +Bβ2 + Cγ2 = 1.
(3.3)

The determinant of this system is a Vandermonde determinant and can be
computed easily. It is ∆ = (α-β) (β-γ) (γ-α) 6= 0.

Using the Cramer’s rule, the solutions of the system (3.3) are

A =
α (γ − β)

(α− β) (β − γ) (γ − α)
=

α

(β − α) (γ − α)
,

B =
β (α− γ)

(α− β) (β − γ) (γ − α)
=

β

(α− β) (γ − β)
,

C =
γ (β − α)

(α− β) (β − γ) (γ − α)
=

γ

(β − γ) (α− γ)
,

therefore relation (3.2) is true. �
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Theorem 3.4. (The Binet-Cauchy formula for the Fibonacci-Narayana
quaternions) Let Un = un ·1+un+1e2+un+2e3+un+3e4 be the nth Fibonacci-
Narayana quaternion, then

Un=D
αn+1

(β-α) (γ-α)
+E

βn+1

(α-β) (γ-β)
+F

γn+1

(β-γ) (α-γ)
, (3.4)

where α, β, γ are the solutions of the equation t3 − t2 − 1 = 0 and

D = 1 + αe1 + α2e2 + α3e3,

E = 1 + βe1 + β2e2 + β3e3,

F = 1 + γe1 + γ2e2 + γ3e3.

Proof. Using relation (3.2) , we have that
Un=un · 1+un+1e2+un+2e3+un+3e4=

= 1
(α-β)(β-γ)(γ-α)

[(αn+1 (γ-β)+βn+1 (α-γ) +γn+1 (β-α)) · 1+
+(αn+2 (γ − β) + βn+2 (α− γ) + γn+2 (β − α)) e1+
+(αn+3 (γ − β) + βn+3 (α− γ) + γn+3 (β − α)) e2+
+ (αn+4 (γ − β) + βn+4 (α− γ) + γn+4 (β − α)) e3]=
= 1

(α−β)(β−γ)(γ−α)
[αn+1 (γ-β) (1+αe1+α2e2+α3e3)+

+βn+1 (α-γ) (1 + βe1 + β2e2 + β3e3) +
+ γn+1 (β-α) (1 + γe1 + γ2e2 + γ3e3)].
�

For negative n, the nth Fibonacci-Narayana number will be defined as
un = un+3−un+2, u0 = 0, u1 = 1, u2 = 1. Accordingly defined the Fibonacci-
Narayana quaternion Un for negative n.

Theorem 3.5. Let Un = un · 1 + un+1e2 + un+2e3 + un+3e4 be the nth
Fibonacci-Narayana quaternion, therefore the following relations are true:

1)
n
∑

i=0

∁inU2n−2i−1 = U3n−1.

2)
n
∑

i=0

∁inU3n−2i−1 = U4n−1.

Proof.
1) Using the Newton’s formula, it results that

(t2 + 1)
n
= ∁0n (t

2)
n
+ ∁1n (t

2)
n−1

+ ∁2n (t
2)

n−2
+ ...+ ∁nn =
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=∁0nt
2n + ∁1nt

2n−2 + ∁2nt
2n−4 + ... + ∁nn. From here, we have that

n
∑

i=0

∁inU2n−2i−1=∁0nU2n−1 + ∁1nU2n−3 + ∁2nU2n−5 + ...+ ∁nnU−1 =

=∁0n

(

D α2n

(β-α)(γ-α)
+ E β2n

(α-β)(γ-β)
+ F γ2n

(β-γ)(α-γ)

)

+

+∁1n

(

D α2n−2

(β-α)(γ-α)
+ E β2n−2

(α-β)(γ-β)
+ F γ2n−2

(β-γ)(α-γ)

)

+ ...+

+∁nn

(

D 1
(β-α)(γ-α)

+ E 1
(α-β)(γ-β)

+ F 1
(β-γ)(α-γ)

)

=

=D 1
(β-α)(γ-α)

(∁0nα
2n + ∁1nα

2n−2 + ...+ ∁nn1)+

+E 1
(α-β)(γ-β)

(∁0nβ
2n + ∁1nβ

2n−2 + ...+ ∁nn1)+

+F 1
(β-γ)(α-γ)

(∁0nγ
2n + ∁1nγ

2n−2 + ...∁nn1) =

=D 1
(β-α)(γ-α)

(α2+1)
n
+E 1

(α-β)(γ-β)
(β2+1)

n
+F 1

(β-γ)(α-γ)
(γ2+1)

n
=

=D 1
(β-α)(γ-α)

α3n + E 1
(α-β)(γ-β)

β3n + F 1
(β-γ)(α-γ)

γ3n = U3n−1.

We used that α3 = α2 + 1, β3 = β2 + 1, γ3 = γ2 + 1.
2) Since t3 = t2 + 1, starting from relation (t3 + t)

n
= t4n, for

t ∈ {α, β, γ}, by straightforward calculations as in 2), we obtain the asked
relation. �

Conclusions. In this paper we investigated some new properties of gen-
eralized Fibonacci quaternions and Fibonacci-Narayana quaternions. Since
Fibonacci-Narayana quaternions was not intensive studied until now, we ex-
pect to find in the future more and surprising new properties. We study
these elements for the beauty of the relations obtained, but the main reason
is that the elements of this type, namely Fibonacci X elements, where
X ∈ {quaternions, generalized quaternions}, can provide us many impor-
tant information in the algebra H (β1, β2) , as for example: sets of invertible
elements in algebraic structures without division.

Acknowledgements. Authors thank referee for his/her patience and
suggestions which help us to improve this paper.
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