Tom XLI

1986

Вып. 6

УДК 542.61

АТОМНО-АБСОРБЦИОННОЕ ОПРЕДЕЛЕНИЕ КАДМИЯ В ПРИРОДНОЙ ВОДЕ ПОСЛЕ КОНЦЕНТРИРОВАНИЯ КАПРИНОВОЙ КИСЛОТОЙ И АМИНАМИ

ОНИЩЕНКО Т. А., ОНИЩЕНКО Ю. К., ПЯТНИЦКИЙ И. В. и СУХАН В. В.

При определении кадмия в природных водах используют его предварительное концентрирование дитизоном [1], оксихинолином [2], дифенилкарбазоном [3], 1,2-нафтосемикарбазоном [4], 1-(2-пиридилазо)-нафтолом-2 [5], каприкватом [6] и дитиокарбаминатами [7]. Лучшим из названных реагентов является пирролидиндитиокарбаминат [8], позволяющий экстракцией в метилизобутилкетон достичь 33-кратного концентрирования кадмия [9]. Ранее показано, что эффективным реагентом для экстракционного концентрирования металлов является каприновая кислота в сочетании с аминами [10].

Цель настоящей работы — исследование каприновой кислоты с добавками аминов в качестве реагента для экстракционного концентрирования кадмия и разработка экстракционно-атомно-абсорбционного метода определения кадмия в воде.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Экстракцию проводили 1 M раствором каприновой кислоты ч., дополнительно очищенной перегонкой в гептане в отсутствие и в присутствии аминов при постоянной ионной силе (0,5 M NaNO₃). Равновесное значение рН водной фазы регулировали прибавлением NaOH или HNO₃ и измеряли рН-метром рН-340 со стеклянным электродом. Равновесную концентрацию кадмия определяли в той из фаз, где она была меньшей: в водной фазе в отсутствие 1,10-фенантролина 1-(2-пиридилазо) резорцином [11], в органической — методом атомной абсорбции. В присутствии фенантролина содержание кадмия в водной фазе находили атомно-абсорбционным методом после экстракции каприновой кислотой распылением экстракта в атомизатор спектрофотометра C-302.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Распределение комплексов между водой и гептаном. Коэффициент распределения кадмия (n=4, P=0,95) при экстракции 1 M раствором каприновой кислоты в гептане увеличивается с повышением рН и достигает максимального значения ($8,0\pm0,5$)· 10^3 при рН 6,7—7,8. Изученные амины влияют на распределение каприната кадмия. Так, при извлечении раствором кислоты с добавками 0,5 M пиридина кривая экстракции сдвигается в более кислую область на одну единицу рН (рис. 1), а максимального значения ($3,50\pm0,09$)· 10^4 коэффициент распределения достигает при рН 7. Степень извлечения кадмия увеличивается и при введении бензиламина, однако максимальное распределение металла [D=($2,00\pm0,08$)· 10^4] наблюдается в более щелочной среде при рН 7,5—8,3. Влияние 1,10-фенантролина на распределение каприната кадмия противоположно: экстракция комплекса с амином уменьшается [D=($3,4\pm0,2$)· 10^3] и экстракционная кривая сдвигается в более щелочную область (рис. 1).

Состав экстрагирующихся комплексов в гептане. Реакцию экстракции кадмия каприновой кислотой и аминами с учетом димеризации кислоты в гептане [12] можно представить уравнением

$$z \operatorname{Cd}_{(B)}^{2+} + z \left(1 + \frac{n}{2}\right) \operatorname{H}_{2} \operatorname{R}_{2(0)} + zp \operatorname{Am}_{(0)} \rightleftharpoons (\operatorname{CdAm}_{p} \operatorname{R}_{2} \cdot n \operatorname{HR})_{z(0)} + 2z \operatorname{H}_{(B)}^{+}$$
 (1)

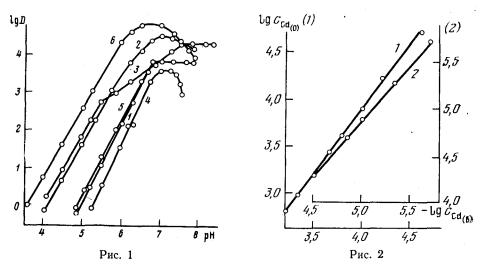


Рис. 1. Зависимость распределения кадмия от рН при экстракции 1 M растворами каприновой кислоты в гептане (1) и в присутствии пиридина (2), бензиламина (3) и 1,10-фенантролина (4) кривые 5, 6 соответствуют кривым 1, 4 при использовании растворителя — смеси (5:1) гептана и нитробензола; общие концентрации: кадмия — $8\cdot 10^{-2}$ M, пиридина, бензиламина — 0.5 M, 1.10-фенантролина — 0.2 M; $V_0 = V_B = 20$ мл

Рис. 2. Зависимость $\lg c_{\mathrm{Cd}(0)} - \lg c_{\mathrm{Cd}(B)}$ при экстракции кадмия каприновой кислотой (1) и в присутствии 1,10-фенантролина (2) общие концентрации: каприновой кислоты — 1 М, 1,10-фенантролина (2) — $2\cdot 10^{-2}$ М; р $H_{\mathrm{рав}_{\mathrm{H}(B)}}$ — 5,18 (1) и 3,62 (2); растворитель: гептан (1) и смесь (5:1) гептана и нитробензола (2); z=1,4 (1), 1 (2)

где z — степень полимеризации комплекса; p — число координируемых молекул амина; n — количество молекул кислоты, сольватирующих комплекс.

Константа экстракции имеет вид

$$K_{ex} = \frac{\left[(\text{CdAm}_{p} R_{2} \cdot n \text{ HR})_{z} \right]_{(0)} \left[\text{H}^{+} \right]_{(B)}^{2}}{\left[\text{Cd}^{2+} \right]_{(B)}^{z} \left[\text{H}_{2} R_{2} \right]_{(0)}^{z} \left[\text{Am} \right]_{(0)}^{2p}} . \tag{2}$$

Принимая, что $z[(CdAm_pR_2 \cdot nHR)_z]_{(0)} = c_{Cd_{(0)}}$ и решая уравнение относительно $c_{Cd_{(0)}}$, после логарифмирования получим

$$\lg c_{\text{Cd}_{(0)}} = z \left(\lg c_{\text{Cd}_{(B)}} + \gamma_{\text{Cd}_{B}} - 2 \lg [H^{+}]_{(B)} \right) + \lg K_{ex} +
+ z \left(1 + \frac{n}{2} \right) \lg [H_{2}R_{2}]_{(0)} + zp \lg [Am]_{(0)} + \lg z,$$
(3)

где $\gamma_{\mathrm{Cd}_{(B)}}$ — коэффициент конкурирующих реакций, учитывающий комплексообразование кадмия в водной фазе и гидролиз.

Преобразование уравнения (3) дает

$$\lg D = \lg K_{ex} + \left(1 + \frac{n}{2}\right) \lg [H_2 R_2]_{(0)} + p \lg [Am]_{(0)} + 2 pH. \tag{4}$$

При p=0 уравнения (3), (4) описывают экстракцию бинарного комплекса кадмия с каприновой кислотой. Уравнение (3) дает возможность определить степень полимеризации комплексов в органической фазе, а уравнение (4) — соотношения Cd: лиганд в однороднолигандном и смешанных комплексах с аминами.

Наклон восходящих участков экстракционных кривых во всех случаях равен 2 (рис. 1), т. е. количество отщепляемых при экстракции протонов равно заряду комплексообразователя.

При переменной концентрации металла и постоянном рН и концентрации лигандов (в этих условиях γ_{ca} является также постоянной вели-

чиной) для бинарного комплекса кадмия с каприновой кислотой наклон зависимости $\lg c_{\operatorname{Cd}_{(0)}}$ от $\lg c_{\operatorname{Cd}_{(B)}}$ дает z=1,4 (рис. 2), что указывает на наличие в гептане смеси мономера и димера. Для смешанолитандных комплексов по данным работы [13], полимеризация нехарактерна. Действительно, для комплекса кадмия с каприновой кислотой и 1,10-фенантролином z=1 (рис. 2), что подтверждает отсутствие димеризации комплекса.

Соотношение Cd: 1,10-фенантролин в экстрагирующемся комплексе определяли методом насыщения, измеряя атомное поглощение кадмия в экстрактах. Найдено, что на 1 моль кадмия приходится 2 моль 1,10-фенантролина. Соотношение металл: монодентатный амин и сольватные числа каприновой кислоты в экстрагирующихся комплексах нахо-

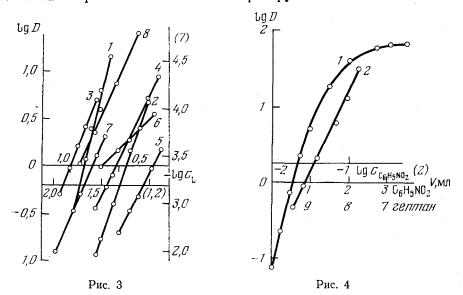


Рис. 3. Определение соотношения Cd—L в бинарном и смешанолигандных комплексах методом сдвига равновесия L— каприновая кислота (1-5), пиридин (6,7) и бензиламин (8); общие концентрации: Cd — $2\cdot 10^{-5}$ (1), $4\cdot 10^{-6}$ (2-6,8) и $1\cdot 10^{-3}$ (7) М, каприновой кислоты — 1 М (6-8); пиридина (2,3) и бензиламина (4)—0,5 М, 1,10-фенантролина — $2\cdot 10^{-2}$ М (5); р $H_{\text{равн}(B)}$ — 7(1,3), 6(7), 5,2 (5) и 4,8 (2,4,6,8); $V_0 = V_B = 10$ мл

Рис. 4. Влияние нитробензола на экстракцию кадмия общие концентрации: каприновой кислоты — 1 M, 1,10-фенантролина — $2\cdot 10^{-2}~M$, кадмия — $4\cdot 10^{-6}~M$, р $H_{\rm рав\, B(B)}$ 4,75, $V_{\rm o}=V_{\rm B}=10~{\rm m}$ л

дили методом сдвига равновесия по уравнению (4) при переменной концентрации одного из лигандов и постоянных концентрациях других лигандов и рН. Согласно [12], константа димеризации каприновой кислоты в гептане равна $6.9 \cdot 10^3$. Это позволяет принять $[H_2R_2]_{(0)} = c_{HR_{(0)}}/2$. С учетом этого экспериментальная зависимость $\lg D$ от $\lg c_{HR_{(0)}}$ (рис. 3) дает для каприната кадмия $n{=}2$, в присутствии пиридина при р ${\sf H}{<}5,\!{\sf 5}$ n=1, а в случае бензиламина, 1,10-фенантролина и пиридина при pH>5,5 n=0. Далее для пиридина p=1 (pH<5,5) и p=2 (pH>5,5), для бензиламина и 1,10-фенантролина p=2. Принимая координационное число кадмия равным 4, можно предположить, что в случае бидентатного фенантролина внутренняя координационная сфера центрального иона будет полностью занята амином. При этом в отличие от комплексов с монодентатными лигандами [CdPy₂R₂] или [CdBA₂R₂] экстрагируется комплекс типа ионного ассоциата [CdPhen₂]R₂. Образование ассоциата является причиной снижения коэффициента распределения кадмия при введении бидентатного 1,10-фенантролина. Учитывая димеризацию бинарного комплекса и отсутствие димеризации комплексов с аминами, состав экстрагирующихся в гептан капринатов кадмия может быть представлен формулами [CdR₂·2HR] и [(CdR₂·2HR)₂], [CdPyR₂·

·HR] и [CdPy₂R₂], [Cd \overline{D} A₂R₂] и [CdPhen₂]R₂.

Известно [14], что степень извлечения ионных ассоциатов возрастает с увеличением диэлектрической проницаемости неводного растворителя. Поэтому мы изучили влияние высокополярного нитробензола на экстракцию фенантролината кадмия каприновой кислотой. Как видно из рис. 4, с увеличением содержания в смеси растворителей нитробензола коэффициент распределения кадмия заметно увеличивается. Это, по-видимому, обусловлено сольватацией ассоциата. Так, билогариф-

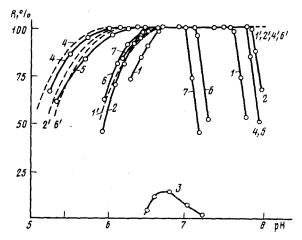


Рис. 5. Зависимость степени экстракции кадмия от рН

Экстрагент — 1 М раствор каприновой кислоты в гептане (1); то же в присутствии 0,5 М пиридина (2, 3); 1 М раствор каприновой кислоты в смеси (5:1) гептана и нитробензола (4—7). Пунктирными линиями указаны соответствующие расчетные кривые. V_0 =10 (1—5) и 5 (6, 7) мл, V_B =1000 мл. Общие концентрации: каприновой кислоты — 1 М; пиридина — 0,5 М; 1,10-фенантролина — $5\cdot10^{-4}$ М; лимонной кислоты (3, 5, 7) — $2\cdot10^{-2}$ М. Введено 4,5 мкг Cd

мическая зависимость коэфициента распределения металла от концентрации нитробензола в смешанном растворителе указывает на сольват-

ное число комплекса, равное 2 (рис. 4).

Мы изучили распределение каприната кадмия, а также комплексного ассоциата [CdPhen₂] R_2 в зависимости от pH смесью (5:1) гептана и нитробензола. Как видно из рис. 1, распределение каприната кадмия по сравнению с гептановым раствором практически не изменяется, однако экстракционная кривая для ионного ассоциата смещается в более кислую область и коэффициент распределения металла увеличивается до $(6,00\pm0,11)\cdot10^4$.

Фактор концентрирования кадмия. Мы изучили зависимость экстракции кадмия от соотношения объемов фаз. Найдено, что однократной экстракцией 1 М каприновой кислотой в гептане достигается практически полное извлечение кадмия (R≥99%) в интервале соотношения объемов водной и органической фаз от 1:1 до 100:1. С другой стороны, при введении пиридина (0,5 М) это соотношение увеличивается до 200:1, а при извлечении металла каприновой кислотой в смеси (5:1) гептана и нитробензола в присутствии 1,10-фенантролина экстракция практически постоянна до соотношения объемов фаз 300:1.

Количественная экстракция капринатов и аминокапринатов из большого объема водной фазы происходит во всех случаях в достаточно широком интервале pH раствора (рис. 5). Так, при $V_{\rm B}:V_{\rm 0}{=}100:1$ каприновая кислота в гептане экстрагирует кадмий в интервале pH 6,7—7,6, а в присутствии 0,5 М пиридина— при pH 6,5—7,8. При использовании раствора кислоты в смеси (5:1) гептана и нитробензола в присутствии фенантролина при $V_{\rm B}:V_{\rm 0}{=}100:1$ извлечение кадмия

происходит при рН 6,0—7,8, а при $V_{\text{в}}:V_{\text{0}}=200:1$ —в интервале рН 6,6—7,1.

Степень экстракции металла связана с коэффициентом распределения и соотношением объемов фаз уравнением $R=100D/(D+V_{\rm B}/V_{\rm 0})$, что позволяет рассчитать зависимость степени экстракции металла от рН при заданном факторе концентрирования металла и соответствующих значениях коэффициентов распределения. На рис. 5 пунктирными линиями показаны расчетные кривые экстракции кадмия. Однако фактически измеренная степень извлечения кадмия, особенно в щелочной области, заметно меньше рассчитанной, что обусловлено конкурирующими реакциями в водной фазе, особенно гидролизом, которые становятся существенными при большом объеме водной фазы, где концентрация реагентов заметно ниже.

При $V_{\rm B}:V_0{=}100:1$ ЭДТА полностью подавляет экстракцию каприната и аминокапринатов кадмия, а лимонная кислота — каприната и пиридинкаприната (рис. 5). При экстракции каприновой кислотой в присутствии фенантролина лимонная кислота лишь незначительно су-

жает интервал рН максимальной экстракции кадмия.

Атомно-абсорбционное определение кадмия. Разработан абсорбционный метод определения кадмия, состоящий в введении экстрактов комплексов в атомизатор и измерении поглощения кадмием линии 228,8 нм. Горючим служил аэрозоль экстракта, окислителем — воздух с расходом 90 делений по шкале ротаметра при давлении 0,25 МПа. Максимальное поглощение наблюдали при токе лампы ВСБ-2 80 мА. Поглощение измеряли при высоте оптической оси луча 11 мм над плоскостью горелки и ширине щели монохроматора 0,15 мм. кристаллизации каприновой предупреждения кислоты слегка обогревали и периодически промывали этанолом. При двукратшкалы измерительного прибора градуировочный расширении график линеен в интервале концентраций кадмия 0,01—0,8 мкг/мл в экстракте.

Мы изучили влияние посторонних ионов на атомно-абсорбционное определение Cd. Установлено, что более чем 2500-кратные количества Zn, Mn(II), Cd(II), Ni(II), Pb(II), Cu(II) и Fe(III) не влияют на

аналитический сигнал кадмия.

Метод использован для определения кадмия в воде р. Тетерев (отбор проб проводили в черте Житомира). Содержащиеся в воде органические вещества окисляли кипячением с перманганатом, а мешающее действие ионов Са и Мg, образующих при экстракции нерастворимые капринаты, устраняли введением лимонной кислоты.

Выполнение определения. 1 л речной воды, подкисленной при отборе проб (5 мл HNO₃, пл. 1,34), нагревают до кипения, прибавляют 1 мл 0,3 М раствора КМпО₄ и кипятят 10 мин. Избыток перманганата разлагают прибавлением 1 мл 4 М раствора гидроксиламина гидрохлорида, воду охлаждают и переносят в делительную воронку. Прибавляют 4 г лимонной кислоты, 1,25 мл 0,4 М водного раствора 1,10-фенантролина гидрохлорида, 5 мл 1 М раствора каприновой кислоты в смеси (5:1) гептана и нитробензола и 13,8 мл 10 М раствора NаОН для создания равновесного рН 6,6—7,0. Экстрагируют 5 мин, после разделения фаз органическую фазу фильтруют через бумажный фильтр и распыляют в атомизатор прибора С-302. В качестве раствора сравнения используют воду, предварительно очищенную от кадмия описанным выше способом.

В анализируемой пробе воды найдено (n=6, P=0.95) 0.34 ± 0.06 мкг Cd ($s_r=0.08$); с добавкой 0.56 мкг Cd найдено 0.90 ± 0.04 мкг ($s_r=0.04$). Предел обнаружения кадмия равен $8\cdot10^{-5}$ мкг/мл.

выводы

Изучена экстракция кадмия 1 М раствором каприновой кислоты в гептане в отсутствие и в присутствии пиридина, бензиламина и 1,10-фенантролина. Установлено стехиометрическое соотношение компонентов в экстрагирующихся комплексах и степень их полимеризации в гептане. Разработана методика экстракционно-атомно-абсорбционного определения кадмия в речной воде с предварительным 200-кратным концентрированием. Предел обнаружения кадмия 8 · 10-5 мкг/мл.

Литература

- Ямамото Ю., Кумамору Т., Хаяси Я., Конкэ М. Бунсэки кагаку (Jap. Anal.), 1971, т. 20, № 3, с. 347.— РЖХим, 1971, 21Г190.
 Пилипенко А. Т., Самчук А. И. Химия и технол. воды, 1981, т. 3, № 4, с. 343.
 Бровко И. А., Турсунов А. Т. Узб. хим. ж., 1981, № 3, с. 18.
 Silva M., Varcarcel M. Microchim. acta, 1983, v. 1, № 3—4, р. 315.
 Коттатек J., Havel J., Sommer L. Collect. Czech. Chem. Commun., 1979, v. 44, № 11,

- 6. Сузуки Т., Кобаяши Х., Савада К. Нихон кагаку кайси, 1982, № 7, с. 1167.— РЖХим., 1983, 6Γ250.
- 7. Бырько В. М. Дитиокарбаматы. М.: Наука, 1984. 343 с.
- 8. Bull. instrum., 1970, № 52, р. 7.— РЖХим, 1970, 15Г227.
 9. Sturgeon R. E., Berman S. S., Desaulniers A., Russell D. S. Talanta, 1980, v. 27, № 2, p. 85.
- 10. Пятницкий И. В., Сухан В. В., Онищенко Т. А., Онищенко Ю. К. Укр. хим. ж., 1983, τ. **49**, № **6**, c. 634.
- 11. Китано М., Уэда Д. Нихон кагаку дзасси. 1970, т. 91, № 8, с. 760.— РЖХим, 1971, 9Γ83.
- 12. Goodman D. S. J. Amer. Chem. Soc., 1958, v. 80, № 15, p. 3887.
- 13. Сухан В. В. Экстракция и применение в анализе разнолигандных комплексов металлов с алифатическими монокарбоновыми кислотами и органическими азотсодержащими основаниями: Днс. ... докт. хим. наук. Киев: Киевск. ун-т, 1980, с. 346. 14. Даймонд Р. М., Так Д. Г. Экстракция неорганических соединений. М.: Госатомиз-
- дат, 1962. 89 с.

Житомирский педагогический институт

Поступила в редакцию

и Киевский государственный университет им. Т. Г. Шевченко

2.IV.1985

ATOMIC ABSORPTION DETERMINATION OF CADMIUM IN NATURAL WATER AFTER PRECONCENTRATION WITH CAPRIC ACID AND AMINES

T. A. ONISHCHENKO, Yu. K. ONISHCHENKO, I. V. PYATNITSKII and V. V. SUKHAN

Zhitomir Pedagogic Institute and T. G. Shevchenko Kiev State University

Solvent extraction of cadmium with a 1 M solution of capric acid in heptane has been studied in the absence and presence of pyridine, benzylamine and 1,10-phenanthroline. The stochiometric ratio of the components in the complexes extracted and the degree of their polymerization in heptane have been estimated. A method has been developed of extraction-atomic-absorption determination of cadmium in river water using a 200-fold preconcentration. The limit of detection for cadmium is 8×10^{-5} µg/ml.