Metadata of the chapter that will be visualized in SpringerLink

Book Title	Models and Theories in Social Systems
Series Title	
Chapter Title	Axial-Symmetric Potential Flows
Copyright Year	2019
Copyright HolderName	Springer Nature Switzerland AG
Corresponding Author	Family Name Plaksa
	Particle
	Given Name S. A.
	Prefix
	Suffix
	Role
	Division Department of Complex Analysis and Potential Theory
	Organization Institute of Mathematics of the National Academy of Science of Ukraine
	Address 3, Tereshchenkivs'ka st., Kyiv, 01004, Ukraine
	Email plaksa62@gmail.com
	plaksa@imath.kiev.ua
Abstract	We consider axial-symmetric stationary flows of the ideal incompressible fluid as an important case of potential solenoid vector fields. We establish relations between axial-symmetric potential solenoid fields and principal extensions of complex analytic functions into a special topological vector space containing an infinite-dimensional commutative Banach algebra. In such a way we substantiate a method for explicit constructing axial-symmetric potentials and Stokes flow functions by means of components of the mentioned principal extensions and establish integral expressions for axial-symmetric potentials and Stokes flow functions in an arbitrary simply connected domain symmetric with respect to an axis. The obtained integral expression of Stokes flow function is applied for solving boundary problem about a streamline of the ideal incompressible fluid along an axial-symmetric body. We obtain criteria of solvability of the problem by means distributions of sources and dipoles on the axis of symmetry and construct unknown solutions using multipoles together with dipoles distributed on the axis.
Keywords (separated by '-')	Laplace Equation - Axial-symmetric potential - Stokes flow function - Streamline - Monogenic function Analytic function

Axial-Symmetric Potential Flows

S. A. Plaksa

Abstract

We consider axial-symmetric stationary flows of the ideal incompressible fluid as an important case of potential solenoid vector fields. We establish relations between axial-symmetric potential solenoid fields and principal extensions of complex analytic functions into a special topological vector space containing an infinitedimensional commutative Banach algebra. In such a way we substantiate a method for explicit constructing axial-symmetric potentials and Stokes flow functions by means of components of the mentioned principal extensions and establish integral expressions for axial-symmetric potentials and Stokes flow functions in an arbitrary simply connected domain symmetric with respect to an axis. The obtained integral expression of Stokes flow function is applied for solving boundary problem about a streamline of the ideal incompressible fluid along an axial-symmetric body. We obtain criteria of solvability of the problem by means distributions of sources and dipoles on the axis of symmetry and construct unknown solutions using multipoles together with dipoles distributed on the axis.

Keywords Laplace Equation • Axial-symmetric potential • Stokes flow function Streamline • Monogenic function • Analytic function

[^0]
1 Potential Solenoid Fields and Flows

Consider a spatial stationary vector field defined by means the vector-function $\mathbf{V} \equiv$ $\mathbf{V}(x, y, z)$ of the Cartesian coordinates x, y, z. The vector \mathbf{V} is defined by means three real scalar functions $v_{1}:=v_{1}(x, y, z), v_{2}:=v_{2}(x, y, z), v_{3}:=v_{3}(x, y, z)$ which give its coordinates in the point (x, y, z), videlicet: $\mathbf{V}=\left(v_{1}, v_{2}, v_{3}\right)$.

Defining a potential solenoid field in a simply connected domain Q of the threedimensional real space \mathbb{R}^{3}, the vector-function \mathbf{V} satisfies the system of equations

$$
\begin{equation*}
\operatorname{div} \mathbf{V}=0, \quad \operatorname{rot} \mathbf{V}=0 \tag{1}
\end{equation*}
$$

where the divergence and the rotor are defined by the following equalities, respectively:

$$
\begin{gathered}
\operatorname{div} \mathbf{V}:=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}+\frac{\partial v_{3}}{\partial z} \\
\operatorname{rot} \mathbf{V}:=\left(\frac{\partial v_{3}}{\partial y}-\frac{\partial v_{2}}{\partial z}, \frac{\partial v_{1}}{\partial z}-\frac{\partial v_{3}}{\partial x}, \frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}\right) .
\end{gathered}
$$

In particular, the velocity field of stationary flow of the ideal incompressible fluid satisfies Eq. (1) and is an important case of potential solenoid vector field.

For a potential solenoid field there exists a scalar potential function $u(x, y, z)$ such that

$$
\mathbf{V}=\operatorname{grad} u:=\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)
$$

and u satisfies the three-dimensional Laplace equation

$$
\begin{equation*}
\Delta_{3} u(x, y, z):=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) u(x, y, z)=0 . \tag{2}
\end{equation*}
$$

2 Plane Potential Solenoid Fields and a Complex Analytic Method of Their Description

In the case where the potential function u does not depend on the coordinate z, the field is called plane stationary potential solenoid field. In this case the potential function $u(x, y)$ satisfies the two-dimensional Laplace equation

$$
\Delta_{2} u(x, y):=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) u(x, y)=0 .
$$

An important achievement of mathematics is the description of plane potential fields by means of analytic functions of complex variable.

A potential $u(x, y)$ and a flow function $v(x, y)$ of plane stationary potential solenoid field satisfy the Cauchy-Riemann conditions

$$
\begin{equation*}
\frac{\partial u(x, y)}{\partial x}=\frac{\partial v(x, y)}{\partial y}, \quad \frac{\partial u(x, y)}{\partial y}=-\frac{\partial v(x, y)}{\partial x} \tag{3}
\end{equation*}
$$

and they form the complex potential $F(x+i y)=u(x, y)+i v(x, y)$ being an analytic function of complex variable $x+i y$. In turn, every analytic function $F(x+i y)$ satisfies the two-dimensional Laplace equation

$$
\Delta_{2} F(x+i y) \equiv F^{\prime \prime}(x+i y)\left(1^{2}+i^{2}\right)=0
$$

due to the equality $1^{2}+i^{2}=0$ for the unit 1 and the imaginary unit i of the algebra of complex numbers.

Many applied problems for plane potential flows are naturally formulated in terms of flow function, and it promotes their effective solving as well as the very well advanced methods of analytic functions in the complex plane (see, e.g., Lavrentyev and Shabat 1987).

3 Axial-Symmetric Potential Solenoid Fields and Flows

In the case where a spatial potential field is symmetric with respect to the axis $O x$, a potential function $u(x, y, z)$ satisfying Eq. (2) is also symmetric with respect to the axis $O x$, i.e. $u(x, y, z)=\varphi(x, r)=\varphi(x,-r)$, where $r:=\sqrt{y^{2}+z^{2}}$, and φ is known as the axial-symmetric potential. Then in a meridian plane $x O r$ there exists a function $\psi(x, r)$ known as the Stokes flow function such that the functions φ and ψ satisfy the following system of equations degenerating on the axis $O x$:

$$
\begin{equation*}
r \frac{\partial \varphi(x, r)}{\partial x}=\frac{\partial \psi(x, r)}{\partial r}, \quad r \frac{\partial \varphi(x, r)}{\partial r}=-\frac{\partial \psi(x, r)}{\partial x} \tag{4}
\end{equation*}
$$

Under the condition that there exist continuous second-order partial derivatives of the functions $\varphi(x, r)$ and $\psi(x, r)$, the system (4) implies the equation

$$
\begin{equation*}
r \Delta \varphi(x, r)+\frac{\partial \varphi(x, r)}{\partial r}=0 \tag{5}
\end{equation*}
$$

for the axial-symmetric potential and the equation

$$
\begin{equation*}
r \Delta \psi(x, r)-\frac{\partial \psi(x, r)}{\partial r}=0 \tag{6}
\end{equation*}
$$

for the Stokes flow function, where $\Delta:=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial r^{2}}$.
Equations (5), (6) are particular cases of the equation

$$
\begin{equation*}
r \Delta U(x, r)+m \frac{\partial U(x, r)}{\partial r}=0 \tag{7}
\end{equation*}
$$

for generalized axial-symmetric potential $U(x, r)$, where $m=$ const $\neq 0$.
An axial-symmetric flow is one of the most widespread kinds of spatial flows. For instance, such flows are axial-symmetric flows along fuselage of aeroplanes, missiles and dirigible balloons, cumulative charges, the movement of fluids and gases in channels with round profiles etc. (cf., e.g., Kr 三ov 1957; Lavrentyev and Shabat 1977, 1987; Batchelor 1970; L \equiv tyev and Shabat 1987).

In view of degeneration of Eq. (4) on the axis $O x$, the theory is developed considerably worse for solutions of system (4) than for solutions of system (3), i.e. complex analytic functions (see Lavrentyev and Shabat 1977, p. 18).

4 Hypercomplex Methods of Research of Spatial Potentials

Analytic function methods in the complex plane for plane potential fields inspire searching analogous effective methods for solving spatial and multidimensional problems of mathematical physics. Many such methods are based on mappings of hypercomplex algebras.

Hamilton (1866), Moisil and Theodoresco (1931), Fueter (1935), Sudbery (1979), Gürlebeck and Sprössig (1997), Kravchenko and Shapiro (1996), Leutwiler (1992), Ryan (1998), Colombo et al. (2011) and many other developed methods which are based on mappings of noncommutative algebras.
P. Ketchum (1928, 1929), Ringleb (1933), Sobrero (1934), Lorch (1943), Wagner (1948), Ward (1953), Riley (1953), Blum (1955), Roşculeţ (1955), Kunz (1971), Edenhofer (1976), Snyder (1982), I. Mel'nichenko (1975, 1986, 2003), Kovalev and Mel'nichenko (1981), Mel'nichenko and Plaksa (2008) and many other developed methods which are based on mappings of commutative algebras.

Last decades, the hypercomplex analysis in both commutative and nonconnutative algebras is very intensively developing. Its applications are developed for constructing solutions of equations of mathematical physics (especially, the multidimensional Laplace equation (see, e.g., Plaksa and Shpakovskii 2011; Plaksa 2012; Plaksa and Shpakivskyi 2012, 2014; 2017; Plaksa and Pukhtaievych 2013, 2014; Shpakivskyi 2016), the Helmholtz equation (see, e.g., Kravchenko and Shapiro 1996), the KleinGordon equation (see, e.g., Kravchenko 2009), the Navier-Stokes equation (see, e.g., Cerejeiras and Kähler 2000; Binlin Zhang et al. 2014; Gi $\bar{\Longrightarrow}$ ck and Habetha 2016; Grigor'ev 2017), the biharmonic equation (see, e.g., Gryshchuk and Plaksa 2009 2013, 2016, 2017), the equations for axial-symmetric potential and for generalized axial-symmetric potential, the equation for Stokes flow function and other elliptic
equations degenerating on an axis (see, e.g., Mel'nichenko and Plaksa 1996, 1997, 2004, 2008; Plaksa 2009, 2012, 2013). In fact, studying analytic functions of a complex variable, hyperholomorphic and monogenic functions defined in commutative and noncommutative algebras discovers a way to develop effective analytic methods for solving various problems of mathematical physics.

In particular, we proved in the papers Mel'nichenko and Plaksa $(1997,2008)$ that solutions of the system (4) in a domain convex in the direction of the axis Or are constructed by means components of principal extensions of analytic functions of a complex variable into a corresponding domain of a special two-dimensional vector manifold in an infinite-dimensional commutative Banach algebra.

5 An Infinite-Dimensional Commutative Banach Algebra $\mathbb{H}_{\mathbb{C}}$ and a Topological Vector Space $\tilde{\mathbb{H}}_{\mathbb{C}}$ Containing the Algebra $\mathbb{H}_{\mathbb{C}}$

Let $\mathbb{H}_{\mathbb{C}}:=\left\{a=\sum_{k=1}^{\infty} a_{k} e_{k}: a_{k} \in \mathbb{C}, \sum_{k=1}^{\infty}\left|a_{k}\right|<\infty\right\}$ be a commutative associative Banach algebra over the field of complex numbers \mathbb{C} with the norm $\|a\|_{\mathbb{H}_{\mathbb{C}}}:=\sum_{k=1}^{\infty}\left|a_{k}\right|$ and the following multiplication table for elements of the basis $\left\{e_{k}\right\}_{k=1}^{\infty}$:

$$
e_{n} e_{1}=e_{n}, \quad e_{m} e_{n}=\frac{1}{2}\left(e_{m+n-1}+(-1)^{n-1} e_{m-n+1}\right) \quad \forall m \geq n \geq 1
$$

(cf., e.g., Mel'nichenko and Plaksa 1997; 2008). The multiplication table was offered by Mel'nichenko 1984.

The algebra $\mathbb{H}_{\mathbb{C}}$ is isomorphic to the algebra $\mathbf{F}_{\mathbf{c o s}}$ of absolutely convergent trigonometric Fourier series

$$
c(\tau)=\sum_{k=1}^{\infty} c_{k} i^{k-1} \cos (k-1) \tau
$$

with complex coefficients c_{k} and the norm $\|c\|_{\mathbf{F}_{\text {cos }}}:=\sum_{k=1}^{\infty}\left|c_{k}\right|$. In this case, we have the isomorphism $e_{2 k-1} \longleftrightarrow i^{k-1} \cos (k-1) \tau$ between basic elements.

Consider the Cartesian plane $\mu:=\left\{\zeta=x e_{1}+r e_{2}: x, r \in \mathbb{R}\right\}$ which is a linear span of the elements e_{1}, e_{2} over the field of real numbers \mathbb{R}.

For a domain $D \subset \mathbb{R}^{2}$ we use consentaneous denotations for congruent domains of the plane μ and the complex plane \mathbb{C}, namely: $D_{\zeta}:=\left\{\zeta=x e_{1}+r e_{2}:(x, r) \in\right.$ $D\} \subset \mu$ and $D_{z}:=\{z=x+i r:(x, r) \in D\} \subset \mathbb{C}$.

We proved in the papers Mel'nichenko and Plaksa $(1997,2008)$ that in the case where the domain D is convex in the direction of the axis $O r$, solutions of the system
(4) can be constructed by means components of principal extensions of complex functions analytic in D_{z} into the domain D_{ζ}.

To generalize such a relation between solutions of the system (4) and hypercomplex functions for domains of more general form, let us insert the algebra $\mathbb{H}_{\mathbb{C}}$ in the topological vector space $\widetilde{\mathbb{H}}_{\mathbb{C}}:=\left\{g=\sum_{k=1}^{\infty} c_{k} e_{k}: c_{k} \in \mathbb{C}\right\}$ with the topology of coordinate-wise convergence.

Note that $\widetilde{\mathbb{H}}_{\mathbb{C}}$ is not an algebra because the product of elements $g_{1}, g_{2} \in \widetilde{\mathbb{H}}_{\mathbb{C}}$ is defined not always. But for each $g=\sum_{k=1}^{\infty} c_{k} e_{k} \in \widetilde{\mathbb{H}}_{\mathbb{C}}$ and $\tilde{\zeta}=(x+i y) e_{1}+r e_{2}$, where $x, y, r \in \mathbb{R}$, one can define the product

$$
\begin{aligned}
g \tilde{\zeta} \equiv \tilde{\zeta} g:= & \left(c_{1}(x+i y)-\frac{c_{2}}{2} r\right) e_{1}+\left(c_{2}(x+i y)+\left(c_{1}-\frac{c_{3}}{2}\right) r\right) e_{2}+ \\
& +\sum_{k=3}^{\infty}\left(c_{k}(x+i y)+\frac{1}{2}\left(c_{k-1}-c_{k+1}\right) r\right) e_{k} .
\end{aligned}
$$

6 Monogenic Functions Taking Values in the Space $\tilde{\mathbb{H}}_{\mathbb{C}}$

Below, we shall consider functions given in domains of the plane μ and taking values in the space $\widetilde{\mathbb{H}}_{\mathbb{C}}$.

We say that a continuous function $\Phi: Q_{\zeta} \rightarrow \widetilde{\mathbb{H}}_{\mathbb{C}}$ is monogenic in a domain $Q_{\zeta} \subset$ μ if Φ is differentiable in the sense of Gateaux in every point of Q_{ζ}, i.e. if for every $\zeta \in Q_{\zeta}$ there exists an element $\Phi^{\prime}(\zeta) \in \widetilde{\mathbb{H}}_{\mathbb{C}}$ such that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0+0}(\Phi(\zeta+\varepsilon h)-\Phi(\zeta)) \varepsilon^{-1}=h \Phi^{\prime}(\zeta) \quad \forall h \in \mu . \tag{8}
\end{equation*}
$$

Let us note that we use the notion of monogenic function in the sense of existence of derived numbers for this function in the domain Q_{ζ} (cf. Goursat 1910; Trokhimchuk 1964).

Consider the decomposition

$$
\begin{equation*}
\Phi(\zeta)=\sum_{k=1}^{\infty} U_{k}(x, r) e_{k}, \quad \zeta=x e_{1}+r e_{2} \tag{9}
\end{equation*}
$$

of a function $\Phi: Q_{\zeta} \rightarrow \widetilde{\mathbb{H}}_{\mathbb{C}}$ with respect to the basis $\left\{e_{k}\right\}_{k=1}^{\infty}$.
Below, we suppose that the functions $U_{k}: Q \rightarrow \mathbb{C}$ are \mathbb{R}-differentiable in the domain Q, i.e.

$$
\begin{aligned}
U_{k}(x+ & \Delta x, r+\Delta r)-U_{k}(x, r)=\frac{\partial U_{k}(x, r)}{\partial x} \Delta x+\frac{\partial U_{k}(x, r)}{\partial r} \Delta r+ \\
& +o\left(\sqrt{(\Delta x)^{2}+(\Delta r)^{2}}\right), \quad(\Delta x)^{2}+(\Delta r)^{2} \rightarrow 0
\end{aligned}
$$

for all $(x, r) \in Q$. Evidently, such an assumption implies the fact that the function (9) is continuous in $Q_{\tilde{\zeta}}$.

In the following theorem we establish the necessary and sufficient conditions for a function $\Phi: \Omega_{\zeta} \rightarrow \widetilde{\mathbb{H}}_{\mathbb{C}}$ be monogenic in a domain $\Omega_{\zeta} \subset \mu$.

Theorem 1 Let in the decomposition (9) of a function $\Phi: Q_{\zeta} \rightarrow \widetilde{\mathbb{H}}_{\mathbb{C}}$ the functions $U_{k}: Q \rightarrow \mathbb{C}$ be \mathbb{R}-differentiable in Q. In order the function Φ be monogenic in the domain Q_{ζ}, it is necessary and sufficient that the following Cauchy-Riemann condition be satisfied in Q_{ζ} :

$$
\begin{equation*}
\frac{\partial \Phi}{\partial r}=\frac{\partial \Phi}{\partial x} e_{2} \tag{10}
\end{equation*}
$$

Proof Necessity. If the function $\Phi: Q_{\zeta} \rightarrow \widetilde{\mathbb{H}}_{\mathbb{C}}$ is monogenic in the domain Q_{ζ}, then for $h=e_{1}$ the equality (8) turns into the equality

$$
\Phi^{\prime}(\zeta)=\frac{\partial \Phi(\zeta)}{\partial x}
$$

Now, setting this expression and $h=e_{2}$ in the equality (8), we obtain the condition (10).

Sufficiency. Let us write the conditions (10) in expanded form:

$$
\begin{align*}
& \frac{\partial U_{1}(x, r)}{\partial r}=-\frac{1}{2} \frac{\partial U_{2}(x, r)}{\partial x}, \\
& \frac{\partial U_{2}(x, r)}{\partial r}=\frac{\partial U_{1}(x, r)}{\partial x}-\frac{1}{2} \frac{\partial U_{3}(x, r)}{\partial x}, \tag{11}\\
& \frac{\partial U_{k}(x, r)}{\partial r}=\frac{1}{2} \frac{\partial U_{k-1}(x, r)}{\partial x}-\frac{1}{2} \frac{\partial U_{k+1}(x, r)}{\partial x}, \quad k=3,4, \ldots,
\end{align*}
$$

Let $\varepsilon>0$ and $h:=h_{1} e_{1}+h_{2} e_{2}$, where $h_{1}, h_{2} \in \mathbb{R}$. Taking into account the equalities (11), we have

$$
\begin{aligned}
(\Phi(\zeta+\varepsilon h)- & \Phi(\zeta)) \varepsilon^{-1}-h \Phi^{\prime}(\zeta)= \\
= & \left(\sum_{k=1}^{\infty}\left(U_{k}\left(x+\varepsilon h_{1}, r+\varepsilon h_{2}\right)-U_{k}(x, r)\right) e_{k}-\right. \\
& \left.-\varepsilon\left(h_{1} e_{1}+h_{2} e_{2}\right) \sum_{k=1}^{\infty} \frac{\partial U_{k}(x, r)}{\partial x} e_{k}\right) \varepsilon^{-1}=
\end{aligned}
$$

$$
\begin{align*}
&=\sum_{k=1}^{\infty} \varepsilon^{-1}\left(U_{k}\left(x+\varepsilon h_{1}, r+\varepsilon h_{2}\right)-U_{k}(x, r)-\right. \\
&\left.-\frac{\partial U_{k}(x, r)}{\partial x} \varepsilon h_{1}-\frac{\partial U_{k}(x, r)}{\partial r} \varepsilon h_{2}\right) e_{k} . \tag{12}
\end{align*}
$$

Inasmuch as the functions U_{k} are \mathbb{R}-differentiable in Q, the last series converges coordinate-wise to zero, i.e. the function Φ is monogenic in Q_{ζ}. Theorem is proved.

7 Principal Extensions of Complex Analytic Functions and Its Relations to Axial-Symmetric Potential Fields

Let us construct for every complex analytic function a special monogenic function taking values in the space $\widetilde{\mathbb{H}}_{\mathbb{C}}$. Such a monogenic function is a generalization of the principal extension of complex analytic function into a commutative Banach algebra. We establish below relations between generalized principal extensions of complex analytic functions and axial-symmetric potential solenoid fields. In such a way we substantiate a method for explicit constructing axial-symmetric potentials and Stokes flow functions in an arbitrary simply connected domain symmetric with respect to the axis $O x$ by means of components of the mentioned principal extensions.

Let the domain $D \subset \mathbb{R}^{2}$ be symmetric with respect to the axis $O x$ and the domain D_{z} be simply connected. Let the boundary ∂D_{z} of domain D_{z} cross the real axis at the points b_{1} and b_{2}. We assume that $b_{1}<b_{2}$.

For every $z \in D_{z} \backslash \mathbb{R}$ let us fix an arbitrary Jordan rectifiable curve $\Gamma_{z \bar{z}}$ in the domain D_{z} that is symmetric with respect to the real axis \mathbb{R} and connects the points z and \bar{z}. In addition, we shall agree that in the case where the domain D_{z} is unbounded, the curve $\Gamma_{z \bar{z}}$ crosses the real axis \mathbb{R} on the interval $\left(-\infty, b_{1}\right)$.

For $z \in D_{z} \backslash \mathbb{R}$ let $\sqrt{(t-z)(t-\bar{z})}$ be that continuous branch of the analytic function $G(t)=\sqrt{(t-z)(t-\bar{z})}$ outside of the cut along $\Gamma_{z \bar{z}}$ for which $G\left(b_{2}\right)>0$.

For every $z \in D_{z}$ with $\operatorname{Im} z=0$, we define by continuity $\sqrt{(t-z)(t-\bar{z})}:=$ $t-z$ for $z<b_{2}$, and $\sqrt{(t-z)(t-\bar{z})}:=-(t-z)$ for $z>b_{2}$.

For every function $F: D_{z} \rightarrow \mathbb{C}$ analytic in a domain D_{z} consider the function

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma}\left(t e_{1}-\zeta\right)^{-1} F(t) d t=U_{1}(x, r) e_{1}+2 \sum_{k=2}^{\infty} U_{k}(x, r) e_{2 k-1} \tag{1}
\end{equation*}
$$

given in D_{ζ} and taking values in $\widetilde{\mathbb{H}}_{\mathbb{C}}$, where

$$
\begin{equation*}
U_{k}(x, r):=\frac{1}{2 \pi i} \int_{\gamma} \frac{F(t)}{\sqrt{(t-z)(t-\bar{z})}}\left(\frac{\sqrt{(t-z)(t-\bar{z})}-(t-x)}{r}\right)^{k-1} d t \tag{14}
\end{equation*}
$$

$\zeta=x e_{1}+r e_{3}$ and $z=x+i r$ for $(x, r) \in D$, and γ is an arbitrary closed Jordan rectifiable curve in D_{z} which embraces $\Gamma_{z \bar{z}}$.

Let us note that if to take a domain $D^{\prime} \subset D$ which is symmetric with respect to the axis $O x$ and convex in the direction of the axis $O r$, and to fix the segment connecting the points z and \bar{z} as the curve $\Gamma_{z \bar{z}}$ for every $z \in D_{z}^{\prime} \backslash \mathbb{R}$, then the function (13) turns into the principal extension of the analytic function F into the domain D_{ζ}^{\prime} (see Hille and Phillips 1957, p. 165).

Therefore, we shall consider the function (13) as a principal extension of analytic function $F: D_{z} \rightarrow \mathbb{C}$ into the domain D_{ζ}.

The following theorem generalizes Theorem 2.6 in Mel'nichenko and Plaksa (2008) (cf. also Theorem 18 in Mel'nichenko and Plaksa 1997), which describes relations between principal extensions of analytic functions into the plane μ and solutions of the system (4) in domains convex in the direction of the axis Or.

Theorem 2 Let the domain $D \subset \mathbb{R}^{2}$ be symmetric with respect to the axis $O x$ and the domain D_{z} be simply connected. If $F: D_{z} \rightarrow \mathbb{C}$ is an analytic function in a domain D_{z}, then the first and the second components of the function (13) generate the solutions φ and ψ of system (4) in D by the formulas

$$
\begin{equation*}
\varphi(x, r)=U_{1}(x, r), \quad \psi(x, r)=r U_{2}(x, r) . \tag{15}
\end{equation*}
$$

Moreover, the functions φ and ψ defined by the formulas (15) are solutions in D of Eqs. (5) and (6), respectively.

Proof In view of the equality (14) and Cauchy theorem, the functions (15) have the form

$$
\begin{equation*}
\varphi(x, r)=\frac{1}{2 \pi i} \int_{\gamma} \frac{F(t)}{\sqrt{(t-z)(t-\bar{z})}} d t \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\psi(x, r)=-\frac{1}{2 \pi i} \int_{\gamma} \frac{F(t)(t-x)}{\sqrt{(t-z)(t-\bar{z})}} d t \tag{17}
\end{equation*}
$$

Now, substituting the partial derivatives of functions (16) and (17) into the equations of system (4) and Eqs. (5) and (6), one can see that the mentioned equations become identities in the domain D. Theorem is proved.

Thus, the formulas (15) enable to construct axial-symmetric potentials and Stokes flow functions by means of components of principal extensions of complex analytic functions into the plane μ.

In particular, elementary functions of the variable $\zeta=x e_{1}+r e_{2}$ are principal extensions of corresponding elementary functions of a complex variable. Let us write expansions with respect to the basis $\left\{e_{k}\right\}_{k=1}^{\infty}$ of some elementary functions of the variable $\zeta=x e_{1}+r e_{2}$. Note that in view of isomorphism between the algebras $\mathbb{H}_{\mathbb{C}}$ and $\mathbf{F}_{\mathbf{c o s}}$, the construction of expansions of this sort is reduced to the determination of relevant Fourier coefficients.

The expansion of a power function has the form (see Mel'nichenko and Plaksa 1997; 2008)

$$
\zeta^{n}=\left(x^{2}+r^{2}\right)^{n / 2}\left(P_{n}(\cos \vartheta) e_{1}+2 \sum_{k=1}^{n} \frac{(\operatorname{sgn} r)^{k} n!}{(n+k)!} P_{n}^{k}(\cos \vartheta) e_{k+1}\right),
$$

where n is a positive integer, $\quad \cos \vartheta:=x\left(x^{2}+r^{2}\right)^{-1 / 2}$,

$$
\operatorname{sgn} r:=\left\{\begin{array}{r}
1 \text { for } r \geq 0, \\
-1 \text { for } r<0,
\end{array}\right.
$$

and Legendre polynomials P_{n} and associated Legendre polynomials P_{n}^{m} are defined be the equalities

$$
P_{n}(t):=\frac{1}{2^{n} n!} \frac{d^{n}}{d t^{n}}\left(t^{2}-1\right)^{n}, \quad P_{n}^{m}(t):=\left(1-t^{2}\right)^{m / 2} \frac{d^{m}}{d t^{m}} P_{n}(t) .
$$

For the functions $e^{\zeta}, \sin \zeta$ and $\cos \zeta$ we have

$$
\begin{gathered}
e^{\zeta}=e^{x}\left(J_{0}(r) e_{1}+2 \sum_{k=1}^{\infty} J_{k}(r) e_{k+1}\right), \\
\sin \zeta=\sin x\left(J_{0}(i r) e_{1}+2 \sum_{k=1}^{\infty} J_{2 k}(i r) e_{2 k+1}\right)-2 i \cos x \sum_{k=1}^{\infty} J_{2 k-1}(i r) e_{2 k}, \\
\cos \zeta=\cos x\left(J_{0}(i r) e_{1}+2 \sum_{k=1}^{\infty} J_{2 k}(i r) e_{2 k+1}\right)+2 i \sin x \sum_{k=1}^{\infty} J_{2 k-1}(i r) e_{2 k},
\end{gathered}
$$

where Bessel functions J_{m} are defined by the equality

$$
J_{m}(t):=\frac{(-1)^{m}}{\pi} \int_{0}^{\pi} e^{i t \cos \tau} \cos m \tau d \tau
$$

In the following theorem we describe relations between components U_{k} of hypercomplex monogenic function (13) and solutions of elliptic equations degenerating on the axis $O x$.

Theorem 3 Let the domain $D \subset \mathbb{R}^{2}$ be symmetric with respect to the axis $O x$ and the domain D_{z} be simply connected. If $F: D_{z} \rightarrow \mathbb{C}$ is an analytic function in a domain D_{z}, then the components U_{k} of principal extension (13) of function F into the domain D_{ζ} satisfy the equations

$$
r^{2} \Delta U_{k}(x, r)+r \frac{\partial U_{k}(x, r)}{\partial r}-(k-1)^{2} U_{k}(x, r)=0, \quad k=1,2, \ldots,
$$

in the domain D. In addition, the function

$$
\psi_{k}(x, r):=r^{k-1} U_{k}(x, r)
$$

is a solution in D of the equation

$$
r \Delta \psi_{k}(x, r)-(2 k-3) \frac{\partial \psi_{k}(x, r)}{\partial r}=0, \quad k=1,2, \ldots
$$

Th $\equiv n 2$ follows from the equalities (13), (14) and Theorem3.1 in Plaksd (2009).

8 Integral Expressions for Axial-Symmetric Potentials and Stokes Flow Functions in Boundary Value Problems

Boundary value problems for solutions of elliptic equations have numerous applications in mathematical physics. For the two- and three-dimensional Laplace equations, various methods for the efficient solving of boundary value problems are developed. However, the direct application of these methods to solving of boundary value problems for axial-symmetric potentials and Stokes flow functions is a quite complicated problem due to a degeneration of the Eqs. (5), (6) on the axis $O x$.

In the paper Keldysh (1951), some correct statements of boundary value problems for an elliptic equation with a degeneration on a straight line are described. They have shown certain differences of these problems from boundary value problems for elliptic equations without degeneration.

Therefore, for solving of boundary value problems in a meridian plane of an axialsymmetric potential field, it is necessary to develop special methods that take into account the nature and specific features of axial-symmetric problems.

One of ways for researching axial-symmetric problems is based on representation of its solutions in the form of potentials of a simple or double layer. With this purpose, fundamental solutions of the appropriate equations with partial derivatives are used (cf., e.g., Weinstein 1948, 1953, 1962; Mikhailov and Rajabov 1972; Rajabov 1974). For instance, in such a way in the paper Rajabov (1974), the main boundary value problems for solutions of equation (7) in a domain with the Lyapunov boundary was reduced to the Fredholm integral equations.

Many methods of research of elliptic equations are based on integral expressions of solutions via analytic functions of a complex variable (cf. Whittaker and Watson 1927; Bateman 1944; Henrici 1953,1957; Huber 1954; Mackie 1955; Erdelyi 1956; Gilbert 1969; Krivenkov 1957; 1960; Rajabov 1965.1968; Polozhii 1973; Polozhii and Ulitko 1965; Kapshivyi 1972; Aleksandrov e $\overline{\text { 1979; Mel'nichenko 1984). }}$

8.1 Integral Expressions for Axial-Symmetric Potentials and Stokes Flow Functions

The formulas (16) and (17) generate axial-symmetric potentials and Stokes flow functions in an arbitrary simply connected domain symmetric with respect to the axis $O x$.

Below, we formulate four statements on the representability of axial-symmetric potentials and Stokes flow functions by the formulas (16) and (17), respectively. The cases of a bounded domain D and an unbounded domain D are considered separately.

In the case of a bounded domain D, the following two statements are true.
Theorem 4 (Plaksa 2001, 2003; Mel'nichenko and Plaksa 2008) Suppose that a function $\varphi(x, r)$ is even with respect to the variable r and satisfies Eq.(5) in a bounded domain D symmetric with respect to the axis Ox. In this case, there exists the unique function F analytic in the domain D_{z} and satisfying the condition

$$
\begin{equation*}
F(\bar{z})=\overline{F(z)} \quad \forall z \in D_{z} \tag{18}
\end{equation*}
$$

and such that the equality (16) is fulfilled for all $(x, r) \in D$.
Theorem 5 (Plaksa 2003; Mel'nichenko and Plaksa 2008) Suppose that the function $\psi(x, y)$ is even with respect to the variable r and satisfies Eq. (6) in a bounded domain D symmetric with respect to the axis $O x$ and the additional assumption

$$
\begin{equation*}
\psi(x, 0) \equiv 0 \quad \forall(x, 0) \in D \tag{19}
\end{equation*}
$$

In this case, there exists a function F_{0} analytic in the domain D_{z} such that the equality (17) is fulfilled with $F=F_{0}$ for all $(x, r) \in D$. Moreover, any analytic function F which satisfies the condition (18) and the equality (17) for all (x, r) $\in D$ is expressed in the form $F(z)=F_{0}(z)+C$, where C is a real constant.

The requirement (19) is natural. For example, for the model of steady flow of an ideal incompressible fluid without sources and vortexes it means that the axis $O x$ is a line of flow.
 lowing two statements are true.

Theorem 6 (Plaksa 2002; Mel'nichenko and Plaksa 2008) Suppose that a function $\varphi(x, r)$ satisfies Eq. (5) in an unbounded domain D with the bounded Jordan boundary symmetric with respect to the axis Ox. Suppose also that the function $\varphi(x, r)$ is even with respect to the variable r and is vanishing at infinity. In this case, there exists the unique analytic in D_{z} function F vanishing at infinity and satisfying the condition (18) and such that the equality (16) is fulfilled for all $(x, r) \in D$.

Theorem 7 (Mel'niche and Plaksa 2003, Mel'nichenko and Plaksa 2008) Suppose that a function $\psi(x, r)$ satisfies Eq.(6) and the condition (19) in an unbounded domain D with the bounded Jordan boundary symmetric with respect to the axis $O x$. Suppose also that the function $\varphi(x, r)$ is even with respect to the variable r and is vanishing at infinity. In this case, there exists the unique analytic in D_{z} function F vanishing at infinity and satisfying the condition (18) and such that the equality (17) is fulfilled for all $(x, r) \in D$. Moreover, the function F has a zero at least of the second order at infinity.

It follows from Theorem 2 that the functions (16), (17) satisfies the system (4) in the domain D for every function F analytic in D_{z}. But these functions takes real values if and only if the condition (18) is satisfied.

Thus, all axial-symmetric potentials and Stokes flow functions, i.e. solutions of the system (4) in D with a physical interpretation, are represented by the integral expressions (16), (17) which can be used for solving boundary value problems for axial-symmetric potential solenoid fields.

Let us note that if the boundary ∂D_{z} is a Jordan rectifiable curve and the function F belongs to the Smirnov class E_{1} (see, e.g., Privalov 1950, p. 205) in the domain D_{z}, then the formulas (16) and (17) can be transformed to the form

$$
\varphi(x, r)=\frac{1}{2 \pi i} \int_{\partial D_{z}} \frac{F(t)}{\sqrt{(t-z)(t-\bar{z})}} d t
$$

$$
\begin{equation*}
\psi(x, r)=-\frac{1}{2 \pi i} \int_{\partial D_{z}} \frac{F(t)(t-x)}{\sqrt{(t-z)(t-\bar{z})}} d t \tag{21}
\end{equation*}
$$

for all $(x, r) \in D$, where $F(t)$ are the angular boundary values of the function F which, as it is known (see, e.g., Privalov 1950, p. 205), exist at almost all points $t \in \partial D_{z}$. In the case where D is an unbounded domain, we admit additionally that the function F is vanishing at infinity for obtaining the formula (20) or the function F has a zero at least of the second order at infinity for obtaining the formula (21).

In the papers Plaksa (2001), Mel'nichenko and Plaksa (2008) we established sufficient conditions for continuous continuations of the functions (20), (21) on the boundary ∂D of a domain D and obtained estimations for modules of continuity of boundary values of the mentioned functions.

Using the integral expressions (20), (21) of axial-symmetric potentials and Stockes flow functions, we developed a functional analytic method for effective solving boundary problems in a meridian plane of spatial axial-symmetric potential field (see Plaksa 2001, 2002, 2003; Mel'nichenko and Plaksa 2008).

8.2 Integral Equation for an Outer Dirichlet Boundary Value Problem for the Stokes Flow Function

Below, let D be an unbounded domain in the meridian plane $x O r$ and the boundary ∂D is a closed Jordan rectifiable curve symmetric with respect to the axis $O x$. The closure of domain D is denoted by \bar{D}.

Let us consider the following outer Dirichlet boundary value problem for the Stokes flow function: to find a continuous in \bar{D} function $\psi(x, r)$ which is a solution of Eq. (6) in D when its boundary values $\psi_{\partial D}(x, r)$ are given on the boundary ∂D, i.e. $\psi(x, r)=\psi_{\partial D}(x, r)$ for all $(x, r) \in \partial D$. It is also required that the function ψ is vanishing at infinity and satisfies the identity (19).

Note that, vanishing at infinity and satisfying the identity (19), the Stokes flow function $\psi(x, r)$ satisfies the maximum principle in the domain D. It follows from the maximum principle that a solution of the mentioned Dirichlet problem is unique.

Let us remind that the boundary ∂D_{z} of domain D_{z} cross the real axis at the points b_{1}, b_{2} and $b_{1}<b_{2}$.

For every $z \in \partial D_{z} \backslash \mathbb{R}$, by $\Gamma_{z \bar{z}}$ we denote that Jordan subarc of the boundary ∂D_{z} with the end points z and \bar{z} which contains the point b_{1}. For $z \in \partial D_{z} \backslash \mathbb{R}$ let $\sqrt{(t-z)(t-\bar{z})}$ be that continuous branch of the analytic function $G(t)=$ $\sqrt{(t-z)(t-\bar{z})}$ outside of the cut along $\Gamma_{z \bar{z}}$ for which $G\left(b_{2}\right)>0$.

The direction of the circuit of ∂D_{z} with the domain D_{z} to the left is taken to be the positive direction.

If the function F has the properties stipulated in Theorem 7, then we shall call F the creative function for the function $\psi(x, r)$.

It is established in the papers Plaksa (2003), Mel'nichenko and Plaksa (2008) that the solution of the mentioned Dirichlet problem is expressed in the form (21), where the creative for ψ function F is a solution of the integral equation

$$
\begin{equation*}
-\frac{1}{2 \pi i} \int_{\partial D_{z}} \frac{F(t)(t-x)}{\sqrt{(t-z)(t-\bar{z})}} d t=\psi_{\partial D}(x, r), \quad \forall(x, r) \in \partial D . \tag{22}
\end{equation*}
$$

Here values of the function $\sqrt{(t-z)(t-\bar{z})}$ for $t \in \Gamma_{z \bar{z}}$ are taken on the right side of the cut $\Gamma_{z \bar{z}}$.

In the papers Plaksa (2003), Mel'nichenko and Plaksa (2008) we developed a method for a transition of Eq. (22) to the Cauchy singular integral equation on the real axis.

In a case important for applications where ∂D_{z} is a smooth curve satisfying certain additional requirements, then the mentioned singular integral equation is reduced to the Fredholm integral equation of the second kind. Moreover, it is established in Plaksa (2003), Mel'nichenko and Plaksa (2008) that in this case there exists the unique function F which satisfies Eq. (22) and is creative for the solution $\psi(x, r)$ of the mentioned Dirichlet problem.

Let us note that we obtained the Fredholm integral equation for the Dirichlet boundary value problem for the Stokes flow function in the case where the boundary ∂D_{z} belongs to a class being wider than the class of Lyapunov curves.

Let us note else that in the case where ∂D_{z} is a circle, the solution F of Eq. (22) is obtained explicitly (see Plaksa 2003; Mel'nichenko and Plaksa 2008).

9 Boundary Value Problem About a Steady Streamline of the Ideal Incompressible Fluid Along an Axial-Symmetric Body

Consider an outer boundary problem having important applications in the hydrodynamics of potential flows.

Let us consider the following problem about a steady streamline of the ideal incompressible fluid along an axial-symmetric body: to find a solution $\psi_{1}(x, r)$ of Eq. (6) in D that satisfies the condition

$$
\begin{equation*}
\psi_{1}(x, r)=0 \quad \forall(x, r) \in \partial D \cup\{(x, r) \in D: r=0\} \tag{23}
\end{equation*}
$$

and have the following asymptotic

$$
\begin{equation*}
\psi_{1}(x, r)=\frac{1}{2} v_{\infty} r^{2}+o(1), \quad x^{2}+r^{2} \rightarrow \infty, v_{\infty}>0 \tag{24}
\end{equation*}
$$

For the model of steady flow of the ideal incompressible fluid the condition (23) means that the boundary ∂D and the axis $O x$ are lines of flow. In the asymptotic (24) v_{∞} is a velocity of unbounded flow at infinity.

We note that explicit solutions of such a problem are known in certain particular cases of steady streamline along an axial-symmetric body (see Lavrentyev and Shabat 1977; Loitsyanskii 1987; Batchelor 1970; Weinstein 1953; Mel'nichenko and Pik 1973, 1975).

Inasmuch as the Stokes flow function

$$
\psi(x, r)=\psi_{1}(x, r)-\frac{1}{2} v_{\infty} r^{2}
$$

is vanishing at infinity, we can apply the integral expression (21) for solving the boundary value problem about a steady streamline of the ideal incompressible fluid along an axial-symmetric body.

To solve this problem in such a way, we obtain the integral equation

$$
\begin{equation*}
\frac{1}{\pi i} \int_{\partial D_{z}} \frac{F(t)(t-x)}{\sqrt{(t-z)(t-\bar{z})}} d t=v_{\infty} r^{2}, \quad(x, r) \in \partial D: r \neq 0, \tag{25}
\end{equation*}
$$

where it is necessary to find the function F creative for $\psi(x, r)$. Evidently, Eq. (25) is a particular case of Eq. (22).

In addition, using the integral expression (21) for the Stokes flow function, in the papers Mel'nichenko and Plaksa $(2003,2008)$ we obtained some results having a natural physical interpretation. Namely, for a boundary problem about a streamline of the ideal incompressible fluid along an axial-symmetric body, we obtained criteria of solvability by means distributions of sources and dipoles on the axis of symmetry and constructed unknown solutions using multipoles together with dipoles distributed on the axis.

9.1 Expressions of Solutions via Distributions of Sources on the Axis

Consider a source located on the axis $O x$ at the point $\left(x_{0}, 0\right)$ with the intensity q. Such a source is simulated by means of analytic function $F(t)=q /\left(t-x_{0}\right)$ for which the following flow function corresponds by the formula (17):

$$
\psi(x, r)=-q \frac{x-x_{0}}{\sqrt{\left(x-x_{0}\right)^{2}+r^{2}}}
$$

As a result of an interaction between an flow of the ideal incompressible fluid oncoming with the velocity $v_{\infty}>0$ and a source with the intensity $q>0$ located at the point $\left(x_{1}, 0\right)$ and a source with the intensity $-q$ (i.e. a sink) located at the point $\left(x_{2}, 0\right)$ in the case $x_{1}<x_{2}$ one can obtain the solution

$$
\begin{equation*}
\psi_{1}(x, r)=\frac{1}{2} v_{\infty} r^{2}-q \frac{x-x_{1}}{\sqrt{\left(x-x_{1}\right)^{2}+r^{2}}}+q \frac{x-x_{2}}{\sqrt{\left(x-x_{1} 2^{2}+r^{2}\right.}} \tag{26}
\end{equation*}
$$

of problem about a steady streamline of the ideal incompressible fluid along an axialsymmetric oval body, for which the boundary points satisfy the equality $\psi_{1}(x, r)=0$. Lines of flow are given by the equations $\psi_{1}(x, r)=$ const (see, e.g., Lavrentyev and Shabat 1977, p. 201).

In the case where $x_{1}>x_{2}$, the function (26) is no solution of problem about a steady streamline because, evidently, there are exist no points satisfying the equality $\psi_{1}(x, r)=0$ for any $x \in\left(x_{2}, x_{1}\right)$.

If sources with intensities q_{k} are located on the axis $O x$ in points $\left(x_{k}, 0\right)$, respectively, then in order the function

$$
\psi_{1}(x, r)=\frac{1}{2} v_{\infty} r^{2}-\sum_{k=1}^{n} q_{k} \frac{x-x_{k}}{\sqrt{\left(x-x_{k}\right)^{2}+r^{2}}}
$$

be a solution of the problem about a steady streamline, it is necessary (but it is not sufficient, generally speaking) that the total intensity of sources be

$$
\begin{equation*}
\sum_{k=1}^{n} q_{k}=0 \tag{27}
\end{equation*}
$$

Now, suppose that the function $F(z)$ is analytic in $\mathbb{C} \backslash\left[a_{\sim}\right.$, $]$, where $\left[a_{1}, a_{2}\right]$ $\equiv \mathrm{se} \equiv \mathrm{t}$ of the real axis. Let $F^{+}(t)$ or $F^{-}(t)$ denote its $\overline{\text { E }}$ ndary values on \bar{a}_{1}, a_{2} 2 respectively. Denote by $L_{p}\left[a_{1}, a_{2}\right]$ the set of functions summable on $\left[a_{1}, a_{2}\right]$ to the p th power.

Using the Cauchy theorem, it is easy to prove the following theorem having a natural physical interpretation.

Theorem 8 Suppose that the solution F of Eq.(25) has the form

$$
\begin{equation*}
F(z)=\sum_{k=1}^{n} \frac{q_{k}}{z-x_{1, k}}+F_{1}(z) \tag{28}
\end{equation*}
$$

where all $x_{1, k}$ belong to a segment $\left[a_{1}, a_{2}\right]$, the equality (27) is fulfilled and the function F_{1} can be continued to an analytic function outside of the segment $\left[a_{1}, a_{2}\right]$ and its boundary values $F_{1}^{+}(t), F_{1}^{-}(t)$ belong to $L_{p}\left[a_{1}, a_{2}\right], p>1$. Then the solution of the problem about steady streamline is given by the formula

$$
\begin{align*}
& \psi_{1}(x, r)=\frac{v_{\infty} r^{2}}{2}-\sum_{k=1}^{n} q_{k} \frac{x-x_{1, k}}{\sqrt{\left(x-x_{1, k}\right)^{2}+r^{2}}}+ \\
& \quad+\int_{a_{1}}^{a_{2}} \frac{q(t)(t-x)}{\sqrt{(t-x)^{2}+r^{2}}} d t \quad \forall(x, r) \in D, \tag{29}
\end{align*}
$$

where

$$
q(t):=-\frac{1}{2 \pi i}\left(F_{1}^{+}(t)-F_{1}^{-}(t)\right) \equiv-\frac{1}{\pi} \operatorname{Im} F_{1}^{+}(t)
$$

is the distribution density of intensity of sources on $\left[a_{1}, a_{2}\right]$ which correspond to the function F_{1}. Moreover, the total intensity of such sources is

$$
\begin{equation*}
\int_{a_{1}}^{a_{2}} q(t) d t=0 . \tag{30}
\end{equation*}
$$

Theorem 8 generalizes the corresponding theorem in Mel'nichenko and Plaksa (2003, 2008), where the case $q_{k} \equiv 0$ was considered. Let us note that the formula
(29) with $q_{k} \equiv 0$ is well-known classical result (see Lavrentyev and Shabat 1977, p. 201). At the same time, in this case, Theorem 8 enables to find the distribution density of sources intensity via boundary values of the creative function F_{1} on the set of sources distribution.

It is easy to prove the following theorem converse to Theorem 8.
Theorem 9 Suppose that the solution of the problem about steady streamline is given by the formula (29), where $q(t) \in L_{p}\left[a_{1}, a_{2}\right], p>1$, and the equalities (27), (30) are fulfilled. Then the solution F of Eq. (25) has the form (28), where the function F_{1} can be continued to the function analytic outside of the segment $\left[a_{1}, a_{2}\right]$ and its boundary values $F_{1}^{+}(t), F_{1}^{-}(t)$ belong to $L_{p}\left[a_{1}, a_{2}\right]$. Moreover, in this case

$$
\begin{equation*}
F_{1}(z)=-\int_{a_{1}}^{a_{2}} \frac{q(t)}{t-z} d t \quad \forall z \in \mathbb{C} \backslash\left[a_{1}, a_{2}\right] \tag{31}
\end{equation*}
$$

Theorem 9 generalizes the corresponding theorem in Mel'nichenko and Plaksa (2003, 2008), where the case $q_{k} \equiv 0$ was considered.

It is possible to rewrite the formula (29) in a more short form if to introduce a Lebesgue-Stieltjes measure generated by the following function of bounded variation:

$$
\begin{equation*}
\mu(t):=\int_{a_{1}}^{t} q(\tau) d \tau+\sum_{k=1}^{n} q_{k} \theta\left(t-x_{1, k}\right) \tag{32}
\end{equation*}
$$

where

$$
\theta(\tau):=\left\{\begin{array}{l}
1 \text { for } \tau \geq 0 \\
0 \text { for } \tau<0
\end{array}\right.
$$

is the Heaviside function. Then the formula (29) can be rewritten as

$$
\psi_{1}(x, r)=\frac{v_{\infty} r^{2}}{2}+\int_{a_{1}}^{a_{2}} \frac{(t-x)}{\sqrt{(t-x)^{2}+r^{2}}} d \mu(t) \quad \forall(x, r) \in D .
$$

We can use as well the following formal equality:

$$
d \mu(t)=\left(q(t)+\sum_{k=1}^{n} q_{k} \delta\left(t-x_{1, k}\right)\right) d t
$$

where δ is the Dirac delta function.
Thus, for all $(x, r) \in D$, the formula (29) can be also rewritten as

$$
\psi_{1}(x, r)=\frac{v_{\infty} r^{2}}{2}+\int_{a_{1}}^{a_{2}}\left(q(t)+\sum_{k=1}^{n} q_{k} \delta\left(t-x_{1, k}\right)\right) \frac{(t-x)}{\sqrt{(t-x)^{2}+r^{2}}} d t
$$

Let's agree that integrals on unlimited intervals of the real axis are understood in the sense of the principal value.

The following theorem was essentially proved in Mel'nichenko and Plaksa (2003, 2008).

Theorem 10 The distribution density $q(t)$ of intensity of sources, which correspond to the function F_{1}, is expressed via values of the function (31) on the set $\left(-\infty, b_{1}\right) \cup$ $\left(b_{2}, \infty\right)$ in the form of the repeated integral

$$
\begin{equation*}
q(t)=\frac{b_{2}-b_{1}}{2 \pi^{2} \sqrt{\left(b_{2}-t\right)\left(t-b_{1}\right)}} \int_{-\infty}^{\infty} A(t, \xi) \int_{-\infty}^{\infty} B(\xi, \tau) d \tau d \xi \quad \forall t \in\left[b_{1}, b_{2}\right] \tag{33}
\end{equation*}
$$

in the case when it exists. Here

$$
\begin{gathered}
A(t, \xi):=\operatorname{ch}(\pi \xi) \exp \left(i \xi \ln \frac{t-b_{1}}{b_{2}-t}\right) \\
B(\xi, \tau):=-\frac{F\left(b_{1}+\left(b_{2}-b_{1}\right)\left(\operatorname{cth} \frac{\tau}{2}+1\right) / 2\right)}{\exp (\tau)-1} \exp (-i \tau \xi) .
\end{gathered}
$$

Proof Consider the integral equation (31), in which $a_{1}=b_{1}, a_{2}=b_{2}$ and $z \in$ $\left(-\infty, b_{1}\right) \cup\left(b_{2}, \infty\right)$. Using the change of variables $t=b_{1}+\left(b_{2}-b_{1}\right) \frac{\tau}{\tau+1}$ and $z=b_{1}+\left(b_{2}-b_{1}\right) \frac{\xi}{\xi-1}$, we transform it to the integral equation

$$
\begin{equation*}
\int_{0}^{\infty} \frac{q_{*}(\tau)}{\tau+\xi} d \tau=F_{*}(\xi), \quad \xi>0 \tag{34}
\end{equation*}
$$

in which

$$
F_{*}(\xi):=-F\left(b_{1}+\left(b_{2}-b_{1}\right) \frac{\xi}{\xi-1}\right) /(\xi-1)
$$

and

$$
q_{*}(\tau):=q\left(b_{1}+\left(b_{2}-b_{1}\right) \frac{\tau}{\tau+1}\right) /(\tau+1)
$$

Equation(34) is solvable explicitly (see, e.g., Zabreiko and al 1968, p. 30). As a result of the inversion of integral operator in Eq. (34), we obtain the expression (33) for the distribution density $q(t)$ of intensity of sources on the segment $\left[b_{1}, b_{2}\right]$. The theorem is proved.

9.2 Expressions of Solutions via Distributions of Dipoles on the Axis

Consider a dipole located on the axis $O x$ at the point $\left(x_{0}, 0\right)$. Let the moment p of dipole be directed along the axis $O x$. We shall also call p by the intensity of dipole. Such a dipole is simulated by means of analytic function $F(t)=p /\left(t-x_{0}\right)^{2}$ for which the following flow function corresponds by the formula (17):

$$
\psi(x, r)=p \frac{r^{2}}{\left(\left(x-x_{0}\right)^{2}+r^{2}\right)^{3 / 2}}
$$

It is well known that as a result of an interaction between an flow of the ideal incompressible fluid oncoming with the velocity $v_{\infty}>0$ and a dipole with the intensity $-p$ located at the point $(0,0)$, one can obtain the picture of steady streamline along a ball with the radius $R=\sqrt[3]{\frac{2 p}{v_{\infty}}}$ and the center in the origin (see, e.g., Lavrentyev and Shabat 1977, p. 200) Lines of flow are given by the equations

$$
\psi_{1}(x, r)=\frac{v_{\infty} r^{2}}{2}-p \frac{r^{2}}{\left(x^{2}+r^{2}\right)^{3 / 2}}=\text { const. }
$$

Let us note that inasmuch as the solution F of Eq. (25) has a zero at least of the second order at infinity, then F has a primitive function \mathcal{F} in D which is vanishing at infinity.

Now, using the Cauchy theorem, it is easy to prove the following theorem having also a natural physical interpretation.

Theorem 11 Suppose that the solution F of Eq. (25) has the form

$$
\begin{equation*}
F(z)=\sum_{k=1}^{m} \frac{p_{k}}{\left(z-x_{2, k}\right)^{2}}+F_{2}(z) \tag{35}
\end{equation*}
$$

where all $x_{2, k}$ belong to a segment $\left[a_{1}, a_{2}\right]$ and a primitive function \mathcal{F}_{2} for the function F_{2} can be continued to an analytic function outside of the segment $\left[a_{1}, a_{2}\right]$ and its boundary values $\mathcal{F}_{2}^{+}(t), \mathcal{F}_{2}^{-}(t)$ belong to $L_{p}\left[a_{1}, a_{2}\right], p>1$. Then the solution of the problem about steady streamline is given by the formula

$$
\psi_{1}(x, r)=\frac{v_{\infty} r^{2}}{2}+\sum_{k=1}^{m} p_{k} \frac{r^{2}}{\left(\left(x-x_{2, k}\right)^{2}+r^{2}\right)^{3 / 2}}-
$$

$$
\begin{equation*}
-r^{2} \int_{a_{1}}^{a_{2}} \frac{p(t)}{\left((t-x)^{2}+r^{2}\right)^{3 / 2}} d t \quad \forall(x, r) \in D \tag{36}
\end{equation*}
$$

where

$$
p(t):=-\frac{1}{2 \pi i}\left(\mathcal{F}_{2}^{+}(t)-\mathcal{F}_{2}^{-}(t)\right) \equiv-\frac{1}{\pi} \operatorname{Im} \mathcal{F}_{2}^{+}(t)
$$

is the distribution density of intensity of dipoles on $\left[a_{1}, a_{2}\right]$ which correspond to the function \mathcal{F}_{2}.

It is also easy to prove the following theorem converse to Theorem 11.
Theorem 12 Suppose that the solution of the problem about steady streamline is given by the formula (36), where $p(t) \in L_{p}\left[a_{1}, a_{2}\right], p>1$. Then the solution F of Eq. (25) has the form (35), where the function F_{2} has a primitive function \mathcal{F}_{2} that can be continued to an function analytic outside of the segment $\left[a_{1}, a_{2}\right]$ and its boundary values $\mathcal{F}_{2}^{+}(t), \mathcal{F}_{2}^{-}(t)$ belong to $L_{p}\left[a_{1}, a_{2}\right]$. Moreover, in this case

$$
\begin{equation*}
\mathcal{F}_{2}(z)=-\int_{a_{1}}^{a_{2}} \frac{p(t)}{t-z} d t \quad \forall z \in \mathbb{C} \backslash\left[a_{1}, a_{2}\right] . \tag{37}
\end{equation*}
$$

The following theorem is proved similarly to Theorem 10.
Theorem 13 The distribution density $p(t)$ of intensity of dipoles, which correspond to the function \mathcal{F}_{2}, is expressed via values of the function (37) on the set $\left(-\infty, b_{1}\right) \cup$ $\left(b_{2}, \infty\right)$ in the form of the repeated integral

$$
p(t)=\frac{b_{2}-b_{1}}{2 \pi^{2} \sqrt{\left(b_{2}-t\right)\left(t-b_{1}\right)}} \int_{-\infty}^{\infty} A(t, \xi) \int_{-\infty}^{\infty} C(\xi, \tau) d \tau d \xi \quad \forall t \in\left[b_{1}, b_{2}\right]
$$

in the case when it exists. Here the function $A(t, \xi)$ is defined in Theorem 10 and

$$
C(\xi, \tau):=-\frac{\mathcal{F}_{2}\left(b_{1}+\left(b_{2}-b_{1}\right)\left(\operatorname{cth} \frac{\tau}{2}+1\right) / 2\right)}{\exp (\tau)-1} \exp (-i \tau \xi) .
$$

Theorem 11-13 generalize the corresponding theorem in Mel'nichenko and Plaksa (2003, 2008), where the case $p_{k} \equiv 0$ was considered.

Let us note that for a source with the intensity $q>0$ located at the point $\left(x_{1}, 0\right)$ and a source with the intensity $-q$ located at the point $\left(x_{2}, 0\right)$ in the case $x_{1}<x_{2}$, the following equality holds:

$$
\begin{aligned}
& -q \frac{x-x_{1}}{\sqrt{\left(x-x_{1}\right)^{2}+r^{2}}}+q \frac{x-x_{2}}{\sqrt{\left(x-x_{2}\right)^{2}+r^{2}}}= \\
& =-r^{2} \int_{\overline{a_{2}}}^{\left.(t-x)^{2}+r^{2}\right)^{3 / 2}} d t \quad \forall(x, r) \in D \text {. }
\end{aligned}
$$

Therefore, such a pair of sources can be replaced by dipoles located on the segment $\left[x_{1}, x_{2}\right]$ with the distribution density of their intensity $p(t)=q$ for all $t \in\left[x_{1}, x_{2}\right]$.

Taking into account this note, it is easy to conclude that every solution of the problem about steady streamline of the form (29) is expressed also by the formula (36), where $p_{k} \equiv 0, p(t)=\mu(t)$ and the function $\mu(t)$ is defined by the equality (32).

But among domains D for which the solution of the problem about steady streamline is expressed by the formula (36), there are domains for which the function ψ_{1} can not be expressed as (29). For example, the last statement is true in the case where there exists $p_{k} \neq 0$ in the equality (36). Thus, the class of domains for which the solution of the problem about steady streamline is given by the formula (36) is wider than the class of domains for which the solution of the mentioned problem is given by the formula (29).

If to introduce the function

$$
\widetilde{p}(t):=p(t)-\sum_{k=1}^{m} p_{k} \delta\left(t-x_{2, k}\right)
$$

and a Lebesgue-Stieltjes measure generated by the following function of bounded variation:

$$
\nu(t):=\int_{a_{1}}^{t} p(\tau) d \tau-\sum_{k=1}^{m} p_{k} \theta\left(t-x_{2, k}\right),
$$

then the formula (36) can be rewritten as

$$
\begin{gather*}
\psi_{1}(x, r)=\frac{v_{\infty} r^{2}}{2}-r^{2} \int_{a_{1}}^{a_{2}} \frac{d \nu(t)}{\left((t-x)^{2}+r^{2}\right)^{3 / 2}}= \\
= \tag{38}\\
\frac{v_{\infty} r^{2}}{2}-r^{2} \int_{a_{1}}^{a_{2}} \frac{\widetilde{p}(t)}{\left((t-x)^{2}+r^{2}\right)^{3 / 2}} d t \quad \forall(x, r) \in D .
\end{gather*}
$$

Let us note that if the function (38) is the solution of the problem about steady streamline and, in addition, $\widetilde{p}(t) \geq 0$ for all $t \in\left[a_{1}, a_{2}\right]$, then the axial-symmetric body $\mathbb{R}^{2} \backslash D$ is convex in the direction of the axis $O r$. It follows evidently from a monotonicity with respect to r^{2} of the integral in the formula (38).

Fig. 1 The streamline along a "pear"

9.3 Using Multipoles for a Construction of Solutions of the Problem About Steady Streamline

At the same time, there are also domains for which it is necessary to use multipoles together with dipoles to obtain the solution of the problem about steady streamline.

For example, the streamline along a "pear" is represented on Fig. 1. In this case, lines of flow are given by the equations

$$
\begin{aligned}
\psi_{1}(x, r) & =r^{2}\left(1,7-\frac{44(x+2)}{\left((x+2)^{2}+r^{2}\right)^{5 / 2}}-\frac{20}{\left((x+2,245)^{2}+r^{2}\right)^{3 / 2}}-\right. \\
& \left.-\frac{1}{\left((x-1)^{2}+r^{2}\right)^{3 / 2}}-\frac{1}{\left((x-2)^{2}+r^{2}\right)^{3 / 2}}\right)=\mathrm{const} .
\end{aligned}
$$

The solution ψ_{1} is obtained by means of three dipoles located in the points $(-2,245 ; 0),(1 ; 0),(2 ; 0)$ and a quadrupole located in the point $(-2 ; 0)$. To construct this solution, we use the formula (17) in which the flow function for a quadrupole

$$
\psi(x, r)=-\frac{44(x+2) r^{2}}{\left((x+2)^{2}+r^{2}\right)^{5 / 2}}
$$

corresponds to the creative function $F(t)=-\frac{88}{3(t+2)^{3}}$. Let us note that in this case a "pear" $\mathbb{R}^{2} \backslash D$ is not convex in the direction of the axis Or.

The streamline along a "matreshka" is represented on Fig. 2. In this case, it turns out already that the body $\mathbb{R}^{2} \backslash D$ is convex in the direction of the axis $O r$. Lines of flow are given by the equations

Fig. 2 The streamline along a "matreshka"

$$
\begin{aligned}
\psi_{1}(x, r) & =r^{2}\left(1,7-\frac{44(x+2)}{\left((x+2)^{2}+r^{2}\right)^{5 / 2}}-\frac{20}{\left((x+2,5)^{2}+r^{2}\right)^{3 / 2}}-\right. \\
& \left.-\frac{1}{\left((x-1)^{2}+r^{2}\right)^{3 / 2}}-\frac{1}{\left((x-2)^{2}+r^{2}\right)^{3 / 2}}\right)=\mathrm{const} .
\end{aligned}
$$

The change of the streamline picture is obtained due to a displacement of a dipole from the point $(-2,245 ; 0)$ into the point $(-2,5 ; 0)$.

An essential specificity for applications is a fact that an use of multipoles can give no solution of the problem about steady streamline. A combination of dipoles and multipoles gives a streamline picture only if certain relations between their intensities are fulfilled.

9.4 Interaction Between a Flow and a Pair "Dipole and Quadrupole"

Let us consider an interaction between a flow of the ideal incompressible fluid oncoming with the velocity $v_{\infty}>0$ and a dipole and a quadrupole, which are located on the axis $O x$.

Let a quadrupole of intensity m be located at the point $(0 ; 0)$ and a dipole of intensity p be located at the point $\left(x_{0} ; 0\right), x_{0} \neq 0$.

We consider two cases: $x_{0}>0$ (see Fig. 3) and $x_{0}<0$ (see. Fig. 4).
(1) In the case where $x_{0}>0$ we use the function

$$
\begin{equation*}
\psi(x, r)=-m \frac{3 x r^{2}}{\left(x^{2}+r^{2}\right)^{5 / 2}}-p \frac{r^{2}}{\left(\left(x-x_{0}\right)^{2}+r^{2}\right)^{3 / 2}} \tag{39}
\end{equation*}
$$

that corresponds to the creative function $F(t)=-\frac{2 m}{t^{3}}-\frac{p}{\left(t-x_{0}\right)^{2}}$ in accordance with the formula (17).

Fig. 3 A Dipole is located on the right of a quadrupole

Fig. 4 A Dipre is located on the left of a quadrupole

If the intensity p of the dipole is small in comparison with the intensity m of the quadrupole (the quantitative relation is formulated below), then the singularity $(0,0)$ of the function $\psi(x, r)$ is located on the boundary that has the equation

$$
\frac{v_{\infty}}{2}+\frac{\psi(x, r)}{r^{2}}=0
$$

which, taking into account the equality (39), we rewrite as

$$
\begin{equation*}
\frac{v_{\infty}}{2}-\frac{3 x m}{\left(x^{2}+r^{2}\right)^{5 / 2}}-\frac{p}{\left(\left(x-x_{0}\right)^{2}+r^{2}\right)^{3 / 2}}=0 \tag{40}
\end{equation*}
$$

Therefore, the function

$$
\begin{equation*}
\psi_{1}(x, r)=\frac{v_{\infty} r^{2}}{2}-m \frac{3 x r^{2}}{\left(x^{2}+r^{2}\right)^{5 / 2}}-p \frac{r^{2}}{\left(\left(x-x_{0}\right)^{2}+r^{2}\right)^{3 / 2}} \tag{41}
\end{equation*}
$$

is no solution of the problem about steady streamline.
An increase of the dipole intensity results finally in formation of a closed contour Γ for which coordinates of points satisfy the Eq. (40) and, moreover, the point $(0,0)$ is located inside of the domain bounded by Γ. Then the equality (40) is fulfilled at a point $(x, 0)$ with $x<0$, i.e. we have the following equality:

$$
\frac{v_{\infty}}{2}+\frac{3 m}{x^{4}}-\frac{p}{\left(x_{0}-x\right)^{3}}=0
$$

from which we find

$$
\begin{equation*}
p=\frac{v_{\infty}}{2}\left(x_{0}-x\right)^{3}\left(1+\frac{6 m}{v_{\infty} x^{4}}\right) . \tag{42}
\end{equation*}
$$

The equality (42) is fulfilled at a point $(x, 0)$ with $x<0$ if and only if

$$
p \geq \frac{v_{\infty}}{2} \min _{x<0}\left(\left(x_{0}-x\right)^{3}\left(1+\frac{6 m}{v_{\infty} x^{4}}\right)\right)=: c_{1}
$$

and in this case the function (41) gives the solution of the problem about steady streamline for unbounded domain with the boundary Γ.

Now, we can assert:
(a) if $p \geq c_{1}$, then the function (41) is the solution of the problem about steady streamline for a certain domain D;
(b) if $p<c_{1}$, then there is no domain D, for which the function (41) would be the solution of the problem about steady streamline.

One can see the examples of streamline picture in the cases $p>c_{1}$ (the upper picture on Fig. 3) and $p=c_{1}$ (the lower picture on Fig. 3).
(2) In the case where $x_{0}<0$ we conclude that if the point $(0,0)$ is located inside of the domain bounded by the contour Γ, then for each $x \in\left[x_{0}, 0\right]$ there exists a point (x, r) with $r>0$ that the equality (40) is fulfilled, from which we find

$$
\begin{equation*}
p=\frac{v_{\infty}}{2}\left(\left(x-x_{0}\right)^{2}+r^{2}\right)^{3 / 2}\left(1-\frac{6 m x}{v_{\infty}\left(x^{2}+r^{2}\right)^{5 / 2}}\right) . \tag{43}
\end{equation*}
$$

For each fixed $x \in\left[x_{0}, 0\right]$, the equality (43) is fulfilled at a point (x, r) with $r>0$ if and only if

$$
\left.p \geq \frac{v_{\infty}}{2} \min _{r \geq 0}\left(\left(x-x_{0}\right)^{2}+r^{2}\right)^{3 / 2}\left(1-\frac{6 m x}{v_{\infty}\left(x^{2}+r^{2}\right)^{5 / 2}}\right)\right) .
$$

Finally, for each $x \in\left[x_{0}, 0\right]$ there exists a point (x, r) with $r>0$ in which the equality (43) is fulfilled if and only if

$$
p \geq \frac{v_{\infty}}{2} \max _{x \in\left[x_{0}, 0\right]} \min _{r \geq 0}\left(\left(\left(x-x_{0}\right)^{2}+r^{2}\right)^{3 / 2}\left(1-\frac{6 m x}{v_{\infty}\left(x^{2}+r^{2}\right)^{5 / 2}}\right)\right)=; c_{2} .
$$

Thus, the following statements are true:
(a) if $p \geq c_{2}$,then the function (41) is the solution of the problem about steady streamline for a certain domain D;
(b) if $p<c_{2}$, then there is no domain D, for which the function (41) would be the solution of the problem about steady streamline.

One can see the examples of streamline picture in the cases $p>c_{2}$ (the upper picture on Fig.4) and $p=c_{2}$ (the lower picture on Fig.4).

Let us note that the boundary ∂D is piecewise-smooth if $p=c_{1}$ in the case where $x_{0}>0$ (see the lower picture on Fig. 3) or $p=c_{2}$ in the case where $x_{0}<0$ (see the lower picture on Fig. 4).

Acknowledgements This research is partially supported by Grant of Ministry of Education and Science of Ukraine (Project No. 0116U001528).

References

Aleksandrov, A.Ya., Soloviev, Yu.P.: Three-Dimensional Problems of the Theory of Elasticity. Moscow, Nauka (in Russian) (1979)
Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge (1970)
Bateman, H.: Partial Differential Equations of Mathematical Physics. Dover, New York (1944)
Blum, E.K.: A theory of analytic functions in Banach algebras. Trans. Am. Math. Soc. 78, 343-370 (1955)

Cerejeiras, P., Kähler, U.: Elliptic boundary value problems of fluid dynamics over unbounded domains. Math. Methods Appl. Sci. 23, 81-101 (2000)
Colombo, F., Sabadini, I., Struppa, D.C.: Progress in mathematics. In: Noncommutative Functional Calculus: Theory and Applications of Slice Hyperholomorphic Functions, vol. 289 (2011)
Edenhofer, J.: A solution of the biharmonic Dirichlet problem by means of hypercomplex analytic functions. In: Meister, V.E., Wendland, W.L., Weck, N. (eds.) Functional Theoretic Methods for Partial Differential Equations (Proceedings of International Symposium Held at Darmstand,

Germany, April 12-15, 1976). Lecture Notes in Mathematics, vol. 561, pp. 192-202. Springer, Berlin (1976)
Erdelyi, A.: Singularities of generalized axially symmetric potentials. Commun. Pure Appl. Math. 9(3), 403-414 (1956)
Fueter, R.: Die Funktionentheorie der Differentialgleichungen $\Delta u=0$ und $\Delta \Delta u=0$ mit vier reellen Variablen. Comment. Math. Helv. 7, 307-330 (1935)
Goursat, E.: Cours d'analyse mathematique, vol. 2. Gauthier-Villars, Paris (1910)
Gilbert, R.P.: Function Theoretic Methods in Partial Differential Equations. Academic, New York, London (1969)
Grigorev, Y.: Quaternionic functions and their applications in a viscous fluid flow. Complex Anal. Oper. Theory 12, 491-508 (2017). https://doi.org/10.1007/s11785-017-0715-z
Gryshchuk, S.V., Plaksa, S.A.: Monogenic functions in a biharmonic algebra. Ukr. Math. J. 61(12), 1865-1876 (2009)
Gryshchuk, S.V., Plaksa, S.A.: Basic properties of monogenic functions in a biharmonic plane. In: Complex Analysis and Dynamical Systems V, Contemporary Mathematics, vol. 591, pp. 127-134. Providence, R.I. (2013)
Gryshchuk, S.V., Plaksa, S.A.: Schwartz-type integrals in a biharmonic plane. Int. J. Pure Appl. Math. 83(1), 193-211 (2013)
Gryshchuk, S.V., Plaksa, S.A.: Monogenic functions in the biharmonic boundary value problem. Math. Methods Appl. Sci. 39(11), 2939-2952 (2016)
Gryshchuk, S.V., Plaksa, S.A.: A Schwartz-type boundary value problem in a biharmonic plane. Lobachevskii J. Math. 38(3), 435-442 (2017)
Gryshchuk, S.A.: Reduction of a Schwartz-type boundary value problem for biharmonic monogenic functions to Fredholm integral equations. Open Math. 15(1), 374-381 (2017)
Gürlebeck, K., Habetha, K., Sprö $\beta \mathrm{ig}$, W.: Application of Holomorphic Functions in Two and Higher Dimensions. Birkhäuser, Boston (2016)
Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, New York (1997)
Hamilton, W.: Elements of Quaternions. University of Dublin press, Dublin (1866)
Henrici, P.: Zur Funktionentheory der Wellengleichung. Comment. Math. Helv. 27(3-4), 235-293 (1953)

Henrici, P.: On the domain of regularity of generalized axially symmetric potentials. Proc. Am. Math. Soc. 8(1), 29-31 (1957)
Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. American Mathematical Society, Providence (1957)
Huber, A.: On the uniqueness of generalized axially symmetric potentials. Ann. Math. 60(2), 351358 (1954)
Kapshivyi, A.A.: On a fundamental integral representation of x-analytic functions and its application to solution of some integral equations. In: Mathematical Physics, Kiev, vol. 12, pp. 38-46 (in Russian) (1972)
Keldysh, M.V.: On some cases of degeneration of an equation of elliptic type on the boundary of a domain. Dokl. Akad. Nauk SSSR 77(2), 181-183 (1951). in Russian
Ketchum, P.W.: Analytic functions of hypercomplex variables. Trans. Am. Math. Soc. 30(4), 641667 (1928)
Ketchum, P.W.: A complete solution of Laplace's equation by an infinite hypervariable. Am. J. Math. 51, 179-188 (1929)
Kovalev, V.F., Mel'nichenko, I.P.: Biharmonic functions on biharmonic plane. Dop. AN Ukr. Ser. A 8, 25-27 (1981). in Russian
Kravchenko, V.V.: Applied Pseudoanalytic Function Theory. Birkhäuser, Boston (2009)
Kravchenko, V.V., Shapiro, M.V. In: Integral Representations for Spatial Models of Mathematical Physics. Pitman Research Notes in Mathematics. Addison Wesley Longman Inc, Menlo Park (1996)

Krivenkov, Y.P.: On one representation of solutions of the EulerPoisson-Darboux equation. Dokl. Akad. Nauk SSSR 116(3), 351-354 (1957)
Krivenkov, Y.P.: Representation of solutions of the Euler-Poisson-Darboux equation via analytic functions. Dokl. Akad. Nauk SSSR 116(4), 545-548 (1957)
Krivenkov, Y.P.: Problem D for the Euler-Poisson-Darboux equation. Investig. Mech. Appl. Math. (5), 134-145 (1960)

Kunz, K.S.: Application of an algebraic technique to the solution of Laplace's equation in three dimensions. SIAM J. Appl. Math. 21(3), 425-441 (1971)
Lavrentyev, M.A.: Cumulative charge and the principles of its operation. Uspekhi matematicheskikh nauk 12(4), 41-56 (1957)
Lavrentyev, M.A., Shabat, B.V.: Problems of Hydrodynamics and Theirs Mathematical Models. Nauka, Moscow (in Russian) (1977)
Lavrentyev, M.A., Shabat, B.V.: Methods of the Theory of Functions of a Complex Variable. Nauka, Moscow (in Russian) (1987)
Leutwiler, H.: Modified quaternionic analysis in \mathbb{R}^{3}. Complex Var. Theory Appl. 20, 19-51 (1992)
Loitsyanskii, L.G.: Mechanics of Liquids and Gases. Nauka, Moscow (in Russian) (1987)
Lorch, E.R.: The theory of analytic function in normed abelin vector rings. Trans. Am. Math. Soc. 54, 414-425 (1943)
Mackie, A.G.: Contour integral solutions of a class of differential equations. J. Ration. Mech. Anal. 4(5), 733-750 (1955)
Mel'nichenko, I.P.: The representation of harmonic mappings by monogenic functions. Ukr. Math. J. 27(5), 499-505 (1975)

Mel'nichenko, I.P.: On a Method of Description of Potential Fields with Axial Symmetry, Contemporary Questions of Real and Complex Analysis, pp. 98-102. Institute of Mathematics of Ukrainian Academy of Sciences, Kiev (1984)
Mel'nichenko, I.P.: Biharmonic bases in algebras of the second rank. Ukr. Math. J. 38(2), 224-226 (1986)

Mel'nichenko, I.P.: Algebras of functionally invariant solutions of the three-dimensional Laplace equation. Ukr. Math. J. 55(9), 1551-1557 (2003)
Mel'nichenko, I.P., Pik, E.M.: On a method for obtaining axial-symmetric flows. Dop. AN Ukr. Ser. A 2, 152-155 (1973)
Mel'nichenko, I.P., Pik, E.M.: Quaternion equations and hypercomplex potentials in the mechanics of a continuous medium. Sov. Appl. Mech. 9(4), 383-387 (1973)
Mel'nichenko, I.P., Pik, E.M.: Quaternion potential of the ideal noncomprssible fluid. Prikl. Mech. 11(1), 125-128 (1975)
Mel'nichenko, I.P., Plaksa, S.A.: Potential fields with axial symmetry and algebras of monogenic functions of vector variable, I. Ukr. Math. J. 48(11), 1717-1730 (1996)
Mel'nichenko, I.P., Plaksa, S.A.: Potential fields with axial symmetry and algebras of monogenic functions of vector variable, II. Ukr. Math. J. 48(12), 1916-1926 (1996)
Mel'nichenko, I.P., Plaksa, S.A.: Potential fields with axial symmetry and algebras of monogenic functions of vector variable, III. Ukr. Math. J. 49(2), 253-268 (1997)
Mel'nichenko, I.P., Plaksa, S.A.: Outer Boundary Problems for the Stokes Flow Function and Steady Streamline Along Axial-symmetric Bodies, Complex Analysis and Potential Theory, pp. 82-91. Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev (2003)
Mel'nichenko, I.P., Plaksa, S.A.: Commutative algebra of hypercomplex analytic functions and solutions of elliptic equations degenerating on an axis. Zb. Pr. Inst. Mat. NAN Ukr. 1(3), 144-150 (2004)

Mel'nichenko, I.P., Plaksa, S.A.: Commutative Algebras and Spatial Potential Fields. Institute of Mathematics NAS of Ukraine, Kiev (2008)
Mikhailov, L.G., Rajabov, N.: An analog of the Poisson formula for certain second-order equations with singular line. Dokl. Akad. Nauk Tadzh. SSR 15(11), 6-9 (1972)
Moisil, G.C., Theodoresco, N.: Functions holomorphes dans l'espace. Mathematica (Cluj) 5, 142159 (1931)

Plaksa, S.A.: On integral representations of an axisymmetric potential and the Stokes flow function in domains of the meridian plane, I. Ukr. Math. J. 53(5), 726-743 (2001)
Plaksa, S.A.: On integral representations of an axisymmetric potential and the Stokes flow function in domains of the meridian plane, II. Ukr. Math. J. 53(6), 938-950 (2001)
Plaksa, S.A.: Dirichlet problem for an axisymmetric potential in a simply connected domain of the meridian plane. Ukr. Math. J. 53(12), 1976-1997 (2001)
Plaksa, S.A.: On an outer Dirichlet problem solving for the axial-symmetric potential. Ukr. Math. J. 54(12), 1982-1991 (2002)

Plaksa, S.A.: Dirichlet problem for the Stokes flow function in a simply connected domain of the meridian plane. Ukr. Math. J. 55(2), 241-281 (2003)
Plaksa, S.A.: Singular and Fredholm integral equations for Dirichlet boundary problems for axialsymmetric potential fields. In: Factotization, Singular Operators and Related Problems: Proceedings of the Conference in Honour of Professor Georgii Litvinchuk, Funchal, Jan 28-Feb 1 (2002), pp. 219-235. Kluwer Academic publishers, Dordrecht (2003)
Plaksa, S.: Commutative algebras of hypercomplex monogenic functions and solutions of elliptic type equations degenerating on an axis. In: More Progress in Analysis: Proceedings of 5th International ISAAC Congress, Catania, July 25-30 (2005), pp. 977-986. World Scientific, Singapore (2009)

Plaksa, S.A.: Commutative algebras associated with classic equations of mathematical physics. In: Advances in Applied Analysis. Trends in Mathematics, pp. 177-223. Springer, Basel (2012)
Plaksa, S.A.: Integral theorems for monogenic functions in an infinite-dimensional space with a commutative multiplication. Zb. Pr. Inst. Mat. NAN Ukr. 10(4-5), 306-319 (2013)
Plaksa, S.A., Pukhtaievych, R.P.: Constructive description of monogenic functions in a threedimensional harmonic algebra with one-dimensional radical. Ukr. Math. J. 65(5), 740-751 (2013)
Plaksa, S.A., Pukhtaievych, R.P.: Monogenic functions in a finite-dimensional semi-simple commutative algebra. An. Şt. Univ. Ovidius Constanţa 22(1), 221-235 (2014)
Plaksa, S.A., Shpakovskii, V.S.: Constructive description of monogenic functions in a harmonic algebra of the third rank. Ukr. Math. J. 62(8), 1251-1266 (2011)
Plaksa, S.A., Shpakivskyi, V.S.: A description of spatial potential fields by means of monogenic functions in infinite-dimensional spaces with a commutative multiplication. Bull. Soc. Sci. Lett. Łódź 62(2), 55-65 (2012)
Plaksa, S.A., Shpakivskyi, V.S.: Cauchy theorem for a surface integral in commutative algebras. Complex Var. Elliptic Equ. 59(1), 110-119 (2014)
Plaksa, S.A., Shpakivskyi, V.S.: Monogenic functions in a finite-dimensional algebra with unit and radical of maximal dimensionality. J. Alger. Math. Soc. 1, 1-13 (2014)
Plaksa, S.A., Shpakivskyi, V.S.: An extension of monogenic functions and spatial potentials. Lobschevskii J. Math. 38(2), 330-337 (2017)
Polozhii, G.N.: Theory and Application of p-Analytic and (p, q)-Analytic Functions. Kiev, Naukova Dumka (1973)
Polozhii, G.N., Ulitko, A.F.: On formulas for an inversion of the main integral representation of p-analiytic function with the characteristic $p=x^{k}$. Prikl. Mekhanika 1(1), 39-51 (1965)
Privalov, I.I.: Boundary Properties of Analytic Functions. Gostekhizdat, Moscow (1950)
Rajabov, N.R.: Some boundary-value problems for an equation of the axisymmetric field theory. In: Investigations on Boundary-Value Problems in the Theory of Functions and Differential Equations, pp. 79-128. Academy of Sciences of Tadzhik SSR, Dushanbe (1965)
Rajabov, N.R.: Integral representations and their inversion for a generalized Cauchy-Riemann system with singular line. Dokl. Akad. Nauk Tadzh. SSR 11(4), 14-18 (1968)
Rajabov, N.R.: Construction of potentials and investigation of inner and outer boundary problems of Dirichlet and Neumann types for the Euler-Poisson- Darboux equations on the plane. Dokl. Akad. Nauk Tadzh. SSR 17(8), 7-11 (1974)
Riley, J.D.: Contributions to the theory of functions of a bicomplex variable. Tohoku Math. J. 5(2), 132-165 (1953)

Ringleb, F.: Beiträge zur funktionentheorie in hyperkomplexen systemen, I. Rend. Circ. Mat. Palermo 57(1), 311-340 (1933)
Roşculeţ, M.N.: Algebre infinite associate la ecuaţii cu derivate parţiale, omogene, cu coeficienţi constanţi de ordin oarecare. Studii şi Cercetǎri Matematice 6(3-4), 567-643 (1955)
Ryan, J.: Dirac operators, conformal transformations and aspects of classical harmonic analysis. J. Lie Theory 8, 67-82 (1998)
Shpakivskyi, V.S.: Constructive description of monogenic functions in a finite-dimensional commutative associative algebra. Adv. Pure Appl. Math. 7(1), 63-76 (2016)
Shpakivskyi, V.S.: Curvilinear integral theorems for monogenic functions in commutative associative algebras. Adv. Appl. Clifford Algebras 26, 417-434 (2016)
Snyder, H.H.: An introduction to theories of regular functions on linear associative algebras. In: Rihard, N.D. (ed.) Commutative Algebra. Analytic methods/Lecture Notes in Pure and Applied Mathematics, vol. 68, pp. 75-94. Marcel Dekker inc., New York, Basel, (1982)
Sobrero, L.: Nuovo metodo per lo studio dei problemi di elasticità, con applicazione al problema della piastra forata. Ricerche di Ingegneria 13(2), 255-264 (1934)
Sudbery, A.: Quaternionic analysis. Math. Proc. Camb. Phil. Soc. 85, 199-225 (1979)
Trokhimchuk, Ju.Ju: Continuous Mappings and Conditions of Monogeneity. Israel Program for Scientific Translations, Jerusalem; Daniel Davey \& Co., Inc, New York (1964)
Wagner, R.D.: The generalized Laplace equations in a function theory for commutative algebras. Duke Math. J. 15, 455-461 (1948)
Ward, J.A.: From generalized Cauchy-Riemann equations to linear algebras. Proc. Am. Math. Soc. 4, 456-461 (1953)
Weinstein, A.: Discontinuous integrals and generalized potential theory. Trans. Am. Math. Soc. 63(2), 342-354 (1948)
Weinstein, A.: Generalized axially symmetric potential theory. Bull. Am. Math. Soc. 59(1), 20-38 (1953)

Weinstein, A.: Singular partial differential equations and their applications. In: Proceedings of the Symposium University of Maryland (1961); Fluid dynamic and applied mathematics, pp. 29-49 (1962)

Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, vol. 2. Cambridge University Press, Cambridge (1927)
Zabreiko, P.P. et al.: Integral Equations. Nauka, Moscow (1968)
Zhang, B., Fu, Y., Rădulescu, V.D.: The stationary Navier-Stokes equations in variable exponent spaces of Clifford-valued functions. Adv. Appl. Clifford Algebras 24, 231-252 (2014)

[^0]: S. A. Plaksa (\boxtimes)

 Department of Complex Analysis and Potential Theory, Institute of Mathematics of the National Academy of Science of Ukraine, 3, Tereshchenkivs'ka st., Kyiv 01004, Ukraine
 e-mail: plaksa62@gmail.com; plaksa@imath.kiev.ua

