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Mel’nichenko on the occasion of his 80th birthday.

Abstract We consider axial-symmetric stationary flows of the ideal incompressible1

fluid as an important case of potential solenoid vector fields. We establish relations2

between axial-symmetric potential solenoid fields and principal extensions of com-3

plex analytic functions into a special topological vector space containing an infinite-4

dimensional commutative Banach algebra. In such a way we substantiate a method5

for explicit constructing axial-symmetric potentials and Stokes flow functions by6

means of components of the mentioned principal extensions and establish integral7

expressions for axial-symmetric potentials and Stokes flow functions in an arbitrary8

simply connected domain symmetric with respect to an axis. The obtained integral9

expression of Stokes flow function is applied for solving boundary problem about10

a streamline of the ideal incompressible fluid along an axial-symmetric body. We11

obtain criteria of solvability of the problem by means distributions of sources and12

dipoles on the axis of symmetry and construct unknown solutions using multipoles13

together with dipoles distributed on the axis.14
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2 S. A. Plaksa

1 Potential Solenoid Fields and Flows17

Consider a spatial stationary vector field defined by means the vector-function V ≡18

V(x, y, z) of the Cartesian coordinates x, y, z. The vector V is defined by means three19

real scalar functionsv1 := v1(x, y, z),v2 := v2(x, y, z),v3 := v3(x, y, z)which give20

its coordinates in the point (x, y, z), videlicet: V = (v1, v2, v3).21

Defining a potential solenoid field in a simply connected domain Q of the three-22

dimensional real space R
3, the vector-function V satisfies the system of equations23

div V = 0 , rot V = 0 , (1)24

where the divergence and the rotor are defined by the following equalities, respec-
tively:

div V := ∂v1

∂x
+ ∂v2

∂y
+ ∂v3

∂z
,

rot V :=
(
∂v3

∂y
− ∂v2

∂z
,
∂v1

∂z
− ∂v3

∂x
,
∂v2

∂x
− ∂v1

∂y

)
.

In particular, the velocity field of stationary flow of the ideal incompressible fluid25

satisfies Eq. (1) and is an important case of potential solenoid vector field.26

For a potential solenoid field there exists a scalar potential function u(x, y, z)
such that

V = grad u :=
(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
,

and u satisfies the three-dimensional Laplace equation27

�3u(x, y, z) :=
(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
u(x, y, z) = 0. (2)28

2 Plane Potential Solenoid Fields and a Complex Analytic29

Method of Their Description30

In the case where the potential function u does not depend on the coordinate z,
the field is called plane stationary potential solenoid field. In this case the potential
function u(x, y) satisfies the two-dimensional Laplace equation

�2u(x, y) :=
(
∂2

∂x2 +
∂2

∂y2

)
u(x, y) = 0 .
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Axial-Symmetric Potential Flows 3

An important achievement of mathematics is the description of plane potential31

fields by means of analytic functions of complex variable.32

A potential u(x, y) and a flow function v(x, y) of plane stationary potential33

solenoid field satisfy the Cauchy–Riemann conditions34

∂u(x, y)

∂x
= ∂v(x, y)

∂y
,

∂u(x, y)

∂y
= −∂v(x, y)

∂x
, (3)35

and they form the complex potential F(x + iy) = u(x, y)+ iv(x, y) being an ana-
lytic function of complex variable x + iy. In turn, every analytic function F(x + iy)

satisfies the two-dimensional Laplace equation

�2 F(x + iy) ≡ F ′′(x + iy) (12 + i2) = 0

due to the equality 12 + i2 = 0 for the unit 1 and the imaginary unit i of the algebra36

of complex numbers.37

Many applied problems for plane potential flows are naturally formulated in terms38

of flow function, and it promotes their effective solving as well as the very well39

advanced methods of analytic functions in the complex plane (see, e.g., Lavrentyev40

and Shabat 1987).41

3 Axial-Symmetric Potential Solenoid Fields and Flows42

In the case where a spatial potential field is symmetric with respect to the axis Ox ,43

a potential function u(x, y, z) satisfying Eq. (2) is also symmetric with respect to44

the axis Ox , i.e. u(x, y, z) = ϕ(x, r) = ϕ(x,−r), where r := √
y2 + z2, and ϕ is45

known as the axial-symmetric potential. Then in a meridian plane x Or there exists46

a function ψ(x, r) known as the Stokes flow function such that the functions ϕ and47

ψ satisfy the following system of equations degenerating on the axis Ox :48

r
∂ϕ(x, r)

∂x
= ∂ψ(x, r)

∂r
, r

∂ϕ(x, r)

∂r
= −∂ψ(x, r)

∂x
. (4)49

Under the condition that there exist continuous second-order partial derivatives50

of the functions ϕ(x, r) and ψ(x, r), the system (4) implies the equation51

r�ϕ(x, r)+ ∂ϕ(x, r)

∂r
= 0 (5)52

for the axial-symmetric potential and the equation53

r�ψ(x, r)− ∂ψ(x, r)

∂r
= 0 (6)54
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4 S. A. Plaksa

for the Stokes flow function, where � := ∂2

∂x2 +
∂2

∂r2 .55

Equations (5), (6) are particular cases of the equation56

r �U (x, r)+ m
∂U (x, r)

∂r
= 0 (7)57

for generalized axial-symmetric potential U (x, r), where m = const �= 0.58

An axial-symmetric flow is one of the most widespread kinds of spatial flows.59

For instance, such flows are axial-symmetric flows along fuselage of aeroplanes,60

missiles and dirigible balloons, cumulative charges, the movement of fluids and61

gases in channels with round profiles etc. (cf., e.g., Krivenkov 1957; Lavrentyev and62

Shabat 1977, 1987; Batchelor 1970; Lavrentyev and Shabat 1987).63

In view of degeneration of Eq. (4) on the axis Ox , the theory is developed consid-64

erably worse for solutions of system (4) than for solutions of system (3), i.e. complex65

analytic functions (see Lavrentyev and Shabat 1977, p. 18).66

4 Hypercomplex Methods of Research of Spatial Potentials67

Analytic function methods in the complex plane for plane potential fields inspire68

searching analogous effective methods for solving spatial and multidimensional69

problems of mathematical physics. Many such methods are based on mappings of70

hypercomplex algebras.71

Hamilton (1866), Moisil and Theodoresco (1931), Fueter (1935), Sudbery (1979),72

Gürlebeck and Sprössig (1997), Kravchenko and Shapiro (1996), Leutwiler (1992),73

Ryan (1998), Colombo et al. (2011) and many other developed methods which are74

based on mappings of noncommutative algebras.75

P. Ketchum (1928, 1929), Ringleb (1933), Sobrero (1934), Lorch (1943), Wagner76

(1948), Ward (1953), Riley (1953), Blum (1955), Roşculeţ (1955), Kunz (1971),77

Edenhofer (1976), Snyder (1982), I. Mel’nichenko (1975, 1986, 2003), Kovalev and78

Mel’nichenko (1981), Mel’nichenko and Plaksa (2008) and many other developed79

methods which are based on mappings of commutative algebras.80

Last decades, the hypercomplex analysis in both commutative and nonconnutative81

algebras is very intensively developing. Its applications are developed for construct-82

ing solutions of equations of mathematical physics (especially, the multidimensional83

Laplace equation (see, e.g., Plaksa and Shpakovskii 2011; Plaksa 2012; Plaksa and84

Shpakivskyi 2012, 2014; 2017; Plaksa and Pukhtaievych 2013, 2014; Shpakivskyi85

2016), the Helmholtz equation (see, e.g., Kravchenko and Shapiro 1996), the Klein–86

Gordon equation (see, e.g., Kravchenko 2009), the Navier–Stokes equation (see, e.g.,87

Cerejeiras and Kähler 2000; Binlin Zhang et al. 2014; Gürlebeck and Habetha 2016;88

Grigor’ev 2017), the biharmonic equation (see, e.g., Gryshchuk and Plaksa 200989

2013, 2016, 2017), the equations for axial-symmetric potential and for generalized90

axial-symmetric potential, the equation for Stokes flow function and other elliptic91
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Axial-Symmetric Potential Flows 5

equations degenerating on an axis (see, e.g., Mel’nichenko and Plaksa 1996, 1997,92

2004, 2008; Plaksa 2009, 2012, 2013). In fact, studying analytic functions of a com-93

plex variable, hyperholomorphic and monogenic functions defined in commutative94

and noncommutative algebras discovers a way to develop effective analytic methods95

for solving various problems of mathematical physics.96

In particular, we proved in the papers Mel’nichenko and Plaksa (1997, 2008) that97

solutions of the system (4) in a domain convex in the direction of the axis Or are98

constructed by means components of principal extensions of analytic functions of a99

complex variable into a corresponding domain of a special two-dimensional vector100

manifold in an infinite-dimensional commutative Banach algebra.101

5 An Infinite-Dimensional Commutative Banach Algebra102

HC and a Topological Vector Space ˜HC Containing the103

Algebra HC104

Let HC := {a =
∞∑

k=1
akek : ak ∈ C,

∞∑
k=1
|ak | <∞} be a commutative associative

Banach algebra over the field of complex numbers C with the norm ‖a‖HC
:=

∞∑
k=1
|ak |

and the following multiplication table for elements of the basis {ek}∞k=1:

ene1 = en, emen = 1

2

(
em+n−1 + (−1)n−1em−n+1

) ∀ m ≥ n ≥ 1

(cf., e.g., Mel’nichenko and Plaksa 1997; 2008). The multiplication table was offered105

by Mel’nichenko 1984.106

The algebra HC is isomorphic to the algebra Fcos of absolutely convergent trigono-
metric Fourier series

c(τ ) =
∞∑

k=1

ck i k−1 cos(k − 1)τ

with complex coefficients ck and the norm ‖c‖Fcos :=
∞∑

k=1
|ck |. In this case, we have107

the isomorphism e2k−1 ←→ i k−1 cos(k − 1)τ between basic elements.108

Consider the Cartesian plane μ := {ζ = xe1 + re2 : x, r ∈ R} which is a linear109

span of the elements e1, e2 over the field of real numbers R.110

For a domain D ⊂ R
2 we use consentaneous denotations for congruent domains111

of the plane μ and the complex plane C, namely: Dζ := {ζ = xe1 + re2 : (x, r) ∈112

D} ⊂ μ and Dz := {z = x + ir : (x, r) ∈ D} ⊂ C.113

We proved in the papers Mel’nichenko and Plaksa (1997, 2008) that in the case114

where the domain D is convex in the direction of the axis Or , solutions of the system115
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6 S. A. Plaksa

(4) can be constructed by means components of principal extensions of complex116

functions analytic in Dz into the domain Dζ .117

To generalize such a relation between solutions of the system (4) and hyper-118

complex functions for domains of more general form, let us insert the algebra HC119

in the topological vector space H̃C := {g =
∞∑

k=1
ckek : ck ∈ C} with the topology of120

coordinate-wise convergence.121

Note that H̃C is not an algebra because the product of elements g1, g2 ∈ H̃C is

defined not always. But for each g =
∞∑

k=1
ckek ∈ H̃C and ζ̃ = (x + iy)e1 + re2, where

x, y, r ∈ R, one can define the product

gζ̃ ≡ ζ̃g :=
(

c1(x + iy)− c2

2
r

)
e1 +

(
c2(x + iy)+

(
c1 − c3

2

)
r

)
e2+

+
∞∑

k=3

(
ck(x + iy)+ 1

2

(
ck−1 − ck+1

)
r

)
ek .

6 Monogenic Functions Taking Values in the Space ˜HC122

Below, we shall consider functions given in domains of the plane μ and taking values123

in the space H̃C.124

We say that a continuous function � : Qζ → H̃C is monogenic in a domain Qζ ⊂125

μ if � is differentiable in the sense of Gateaux in every point of Qζ , i.e. if for every126

ζ ∈ Qζ there exists an element �′(ζ) ∈ H̃C such that127

lim
ε→0+0

(�(ζ + εh)−�(ζ)) ε−1 = h �′(ζ) ∀ h ∈ μ . (8)128

Let us note that we use the notion of monogenic function in the sense of exis-129

tence of derived numbers for this function in the domain Qζ (cf. Goursat 1910;130

Trokhimchuk 1964).131

Consider the decomposition132

�(ζ) =
∞∑

k=1

Uk(x, r) ek , ζ = xe1 + re2 , (9)133

of a function � : Qζ → H̃C with respect to the basis {ek}∞k=1 .134

Below, we suppose that the functions Uk : Q → C are R-differentiable in the
domain Q, i.e.
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Axial-Symmetric Potential Flows 7

Uk(x +�x, r +�r)−Uk(x, r) = ∂Uk(x, r)

∂x
�x + ∂Uk(x, r)

∂r
�r+

+ o
(√

(�x)2 + (�r)2
)

, (�x)2 + (�r)2 → 0 ,

for all (x, r) ∈ Q. Evidently, such an assumption implies the fact that the function135

(9) is continuous in Q ζ̃ .136

In the following theorem we establish the necessary and sufficient conditions for137

a function � : �ζ → H̃C be monogenic in a domain �ζ ⊂ μ.138

Theorem 1 Let in the decomposition (9) of a function � : Qζ → H̃C the functions139

Uk : Q → C be R-differentiable in Q. In order the function � be monogenic in140

the domain Qζ , it is necessary and sufficient that the following Cauchy–Riemann141

condition be satisfied in Qζ :142

∂�

∂r
= ∂�

∂x
e2 . (10)143

Proof Necessity. If the function � : Qζ → H̃C is monogenic in the domain Qζ , then144

for h = e1 the equality (8) turns into the equality145

�′(ζ) = ∂�(ζ)

∂x
.146

Now, setting this expression and h = e2 in the equality (8), we obtain the condition147

(10).148

Sufficiency. Let us write the conditions (10) in expanded form:149

∂U1(x, r)

∂r
= −1

2

∂U2(x, r)

∂x
,

∂U2(x, r)

∂r
= ∂U1(x, r)

∂x
− 1

2

∂U3(x, r)

∂x
,

∂Uk(x, r)

∂r
= 1

2

∂Uk−1(x, r)

∂x
− 1

2

∂Uk+1(x, r)

∂x
, k = 3, 4, . . . ,

(11)150

Let ε > 0 and h := h1e1 + h2e2, where h1, h2 ∈ R. Taking into account the equal-151

ities (11), we have152

(
�(ζ + εh)−�(ζ)

)
ε−1 − h �′(ζ) =153

=
( ∞∑

k=1

(
Uk(x + εh1, r + εh2)−Uk(x, r)

)
ek−154

− ε (h1e1 + h2e2)

∞∑
k=1

∂Uk(x, r)

∂x
ek

)
ε−1 =155

156

157
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8 S. A. Plaksa

=
∞∑

k=1

ε−1

(
Uk(x + εh1, r+εh2)−Uk(x, r)−158

− ∂Uk(x, r)

∂x
εh1 − ∂Uk(x, r)

∂r
εh2

)
ek . (12)159

160

Inasmuch as the functions Uk are R-differentiable in Q, the last series converges161

coordinate-wise to zero, i.e. the function � is monogenic in Qζ . Theorem is proved.162

7 Principal Extensions of Complex Analytic Functions163

and Its Relations to Axial-Symmetric Potential Fields164

Let us construct for every complex analytic function a special monogenic function165

taking values in the space H̃C. Such a monogenic function is a generalization of the166

principal extension of complex analytic function into a commutative Banach algebra.167

We establish below relations between generalized principal extensions of complex168

analytic functions and axial-symmetric potential solenoid fields. In such a way we169

substantiate a method for explicit constructing axial-symmetric potentials and Stokes170

flow functions in an arbitrary simply connected domain symmetric with respect to171

the axis Ox by means of components of the mentioned principal extensions.172

Let the domain D ⊂ R
2 be symmetric with respect to the axis Ox and the domain173

Dz be simply connected. Let the boundary ∂Dz of domain Dz cross the real axis at174

the points b1 and b2. We assume that b1 < b2.175

For every z ∈ Dz \ R let us fix an arbitrary Jordan rectifiable curve �zz̄ in the176

domain Dz that is symmetric with respect to the real axis R and connects the points z177

and z̄. In addition, we shall agree that in the case where the domain Dz is unbounded,178

the curve �zz̄ crosses the real axis R on the interval (−∞, b1).179

For z ∈ Dz \ R let
√

(t − z)(t − z̄) be that continuous branch of the analytic180

function G(t) = √(t − z)(t − z̄) outside of the cut along �zz̄ for which G(b2) > 0.181

For every z ∈ Dz with Im z = 0 , we define by continuity
√

(t − z)(t − z̄) :=182

t − z for z < b2, and
√

(t − z)(t − z̄) := −(t − z) for z > b2.183

For every function F : Dz → C analytic in a domain Dz consider the function184

1

2πi

∫
γ

(te1 − ζ)−1 F(t) dt = U1(x, r) e1 + 2
∞∑

k=2

Uk(x, r) e2k−1 (13)185

given in Dζ and taking values in H̃C, where186

Uk(x, r) := 1

2πi

∫
γ

F(t)√
(t − z)(t − z̄)

(√
(t − z)(t − z̄)− (t − x)

r

)k−1

dt, (14)187
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Axial-Symmetric Potential Flows 9

ζ = xe1 + re3 and z = x + ir for (x, r) ∈ D, and γ is an arbitrary closed Jordan188

rectifiable curve in Dz which embraces �zz̄ .189

Let us note that if to take a domain D′ ⊂ D which is symmetric with respect to the190

axis Ox and convex in the direction of the axis Or , and to fix the segment connecting191

the points z and z̄ as the curve �zz̄ for every z ∈ D′z \ R, then the function (13) turns192

into the principal extension of the analytic function F into the domain D′ζ (see Hille193

and Phillips 1957, p. 165).194

Therefore, we shall consider the function (13) as a principal extension of analytic195

function F : Dz → C into the domain Dζ .196

The following theorem generalizes Theorem 2.6 in Mel’nichenko and Plaksa197

(2008) (cf. also Theorem 18 in Mel’nichenko and Plaksa 1997), which describes198

relations between principal extensions of analytic functions into the plane μ and199

solutions of the system (4) in domains convex in the direction of the axis Or .200

Theorem 2 Let the domain D ⊂ R
2 be symmetric with respect to the axis Ox and201

the domain Dz be simply connected. If F : Dz → C is an analytic function in a202

domain Dz, then the first and the second components of the function (13) generate203

the solutions ϕ and ψ of system (4) in D by the formulas204

ϕ(x, r) = U1(x, r), ψ(x, r) = r U2(x, r) . (15)205

Moreover, the functions ϕ and ψ defined by the formulas (15) are solutions in D of206

Eqs. (5) and (6), respectively.207

Proof In view of the equality (14) and Cauchy theorem, the functions (15) have the208

form209

ϕ(x, r) = 1

2πi

∫
γ

F(t)√
(t − z)(t − z̄)

dt, (16)210

211

ψ(x, r) = − 1

2πi

∫
γ

F(t) (t − x)√
(t − z)(t − z̄)

dt . (17)212

Now, substituting the partial derivatives of functions (16) and (17) into the equa-213

tions of system (4) and Eqs. (5) and (6), one can see that the mentioned equations214

become identities in the domain D. Theorem is proved.215

Thus, the formulas (15) enable to construct axial-symmetric potentials and Stokes216

flow functions by means of components of principal extensions of complex analytic217

functions into the plane μ.218

In particular, elementary functions of the variable ζ = xe1 + re2 are principal219

extensions of corresponding elementary functions of a complex variable. Let us220

write expansions with respect to the basis {ek}∞k=1 of some elementary functions of221

the variable ζ = xe1 + re2. Note that in view of isomorphism between the algebras222

HC and Fcos, the construction of expansions of this sort is reduced to the determination223

of relevant Fourier coefficients.224
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10 S. A. Plaksa

The expansion of a power function has the form (see Mel’nichenko and Plaksa
1997; 2008)

ζn = (x2 + r2)n/2

(
Pn(cosϑ) e1 + 2

n∑
k=1

(sgn r)k n!
(n + k)! Pk

n (cosϑ) ek+1

)
,

where n is a positive integer, cosϑ := x(x2 + r2)−1/2,225

sgn r :=
{

1 for r ≥ 0,

−1 for r < 0,
226

and Legendre polynomials Pn and associated Legendre polynomials Pm
n are defined

be the equalities

Pn(t) := 1

2n n!
dn

dtn
(t2 − 1)n, Pm

n (t) := (1− t2)m/2 dm

dtm
Pn(t) .

For the functions eζ , sin ζ and cos ζ we have227

eζ = ex

(
J0(r) e1 + 2

∞∑
k=1

Jk(r) ek+1

)
,228

sin ζ = sin x

(
J0(ir) e1 + 2

∞∑
k=1

J2k(ir) e2k+1

)
− 2i cos x

∞∑
k=1

J2k−1(ir) e2k,

cos ζ = cos x

(
J0(ir) e1 + 2

∞∑
k=1

J2k(ir) e2k+1

)
+ 2i sin x

∞∑
k=1

J2k−1(ir) e2k,

where Bessel functions Jm are defined by the equality

Jm(t) := (−1)m

π

π∫
0

eit cos τ cos mτ dτ .

In the following theorem we describe relations between components Uk of hyper-229

complex monogenic function (13) and solutions of elliptic equations degenerating230

on the axis Ox .231

Theorem 3 Let the domain D ⊂ R
2 be symmetric with respect to the axis Ox and

the domain Dz be simply connected. If F : Dz → C is an analytic function in a
domain Dz, then the components Uk of principal extension (13) of function F into
the domain Dζ satisfy the equations
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Axial-Symmetric Potential Flows 11

r2 �Uk(x, r)+ r
∂Uk(x, r)

∂r
− (k − 1)2 Uk(x, r) = 0, k = 1, 2, . . . ,

in the domain D. In addition, the function

ψk(x, r) := rk−1 Uk(x, r)

is a solution in D of the equation

r �ψk(x, r)− (2k − 3)
∂ψk(x, r)

∂r
= 0 , k = 1, 2, . . . .

Theorem2 follows from the equalities (13), (14) and Theorem3.1 in232

Plaksa (2009).233

8 Integral Expressions for Axial-Symmetric Potentials234

and Stokes Flow Functions in Boundary Value Problems235

Boundary value problems for solutions of elliptic equations have numerous applica-236

tions in mathematical physics. For the two- and three-dimensional Laplace equations,237

various methods for the efficient solving of boundary value problems are developed.238

However, the direct application of these methods to solving of boundary value prob-239

lems for axial-symmetric potentials and Stokes flow functions is a quite complicated240

problem due to a degeneration of the Eqs. (5), (6) on the axis Ox .241

In the paper Keldysh (1951), some correct statements of boundary value problems242

for an elliptic equation with a degeneration on a straight line are described. They243

have shown certain differences of these problems from boundary value problems for244

elliptic equations without degeneration.245

Therefore, for solving of boundary value problems in a meridian plane of an axial-246

symmetric potential field, it is necessary to develop special methods that take into247

account the nature and specific features of axial-symmetric problems.248

One of ways for researching axial-symmetric problems is based on representation249

of its solutions in the form of potentials of a simple or double layer. With this purpose,250

fundamental solutions of the appropriate equations with partial derivatives are used251

(cf., e.g., Weinstein 1948, 1953, 1962; Mikhailov and Rajabov 1972; Rajabov 1974).252

For instance, in such a way in the paper Rajabov (1974), the main boundary value253

problems for solutions of equation (7) in a domain with the Lyapunov boundary was254

reduced to the Fredholm integral equations.255

Many methods of research of elliptic equations are based on integral expressions256

of solutions via analytic functions of a complex variable (cf. Whittaker and Watson257

1927; Bateman 1944; Henrici 1953,1957; Huber 1954; Mackie 1955; Erdelyi 1956;258

Gilbert 1969; Krivenkov 1957; 1960; Rajabov 1965,1968; Polozhii 1973; Polozhii259

and Ulitko 1965; Kapshivyi 1972; Aleksandrov et al. 1979; Mel’nichenko 1984).260
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12 S. A. Plaksa

8.1 Integral Expressions for Axial-Symmetric Potentials261

and Stokes Flow Functions262

The formulas (16) and (17) generate axial-symmetric potentials and Stokes flow263

functions in an arbitrary simply connected domain symmetric with respect to the264

axis Ox .265

Below, we formulate four statements on the representability of axial-symmetric266

potentials and Stokes flow functions by the formulas (16) and (17), respectively. The267

cases of a bounded domain D and an unbounded domain D are considered separately.268

In the case of a bounded domain D, the following two statements are true.269

Theorem 4 (Plaksa 2001, 2003; Mel’nichenko and Plaksa 2008) Suppose that a270

function ϕ(x, r) is even with respect to the variable r and satisfies Eq. (5) in a271

bounded domain D symmetric with respect to the axis Ox. In this case, there exists272

the unique function F analytic in the domain Dz and satisfying the condition273

F(z̄) = F(z) ∀ z ∈ Dz (18)274

and such that the equality (16) is fulfilled for all (x, r) ∈ D.275

Theorem 5 (Plaksa 2003; Mel’nichenko and Plaksa 2008) Suppose that the function276

ψ(x, y) is even with respect to the variable r and satisfies Eq. (6) in a bounded domain277

D symmetric with respect to the axis Ox and the additional assumption278

ψ(x, 0) ≡ 0 ∀ (x, 0) ∈ D. (19)279

In this case, there exists a function F0 analytic in the domain Dz such that the equality280

(17) is fulfilled with F = F0 for all (x, r) ∈ D. Moreover, any analytic function F281

which satisfies the condition (18) and the equality (17) for all (x, r) ∈ D is expressed282

in the form F(z) = F0(z)+ C, where C is a real constant.283

The requirement (19) is natural. For example, for the model of steady flow of an284

ideal incompressible fluid without sources and vortexes it means that the axis Ox is285

a line of flow.286

In the case of a bounded domain D with the bounded Jordan boundary, the fol-287

lowing two statements are true.288

Theorem 6 (Plaksa 2002; Mel’nichenko and Plaksa 2008) Suppose that a function289

ϕ(x, r) satisfies Eq. (5) in an unbounded domain D with the bounded Jordan bound-290

ary symmetric with respect to the axis Ox. Suppose also that the function ϕ(x, r)291

is even with respect to the variable r and is vanishing at infinity. In this case, there292

exists the unique analytic in Dz function F vanishing at infinity and satisfying the293

condition (18) and such that the equality (16) is fulfilled for all (x, r) ∈ D.294
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Axial-Symmetric Potential Flows 13

Theorem 7 (Mel’nichenko and Plaksa 2003, Mel’nichenko and Plaksa 2008) Sup-295

pose that a function ψ(x, r) satisfies Eq. (6) and the condition (19) in an unbounded296

domain D with the bounded Jordan boundary symmetric with respect to the axis Ox.297

Suppose also that the function ϕ(x, r) is even with respect to the variable r and is298

vanishing at infinity. In this case, there exists the unique analytic in Dz function F299

vanishing at infinity and satisfying the condition (18) and such that the equality (17)300

is fulfilled for all (x, r) ∈ D. Moreover, the function F has a zero at least of the301

second order at infinity.302

It follows from Theorem 2 that the functions (16), (17) satisfies the system (4)303

in the domain D for every function F analytic in Dz . But these functions takes real304

values if and only if the condition (18) is satisfied.305

Thus, all axial-symmetric potentials and Stokes flow functions, i.e. solutions of306

the system (4) in D with a physical interpretation, are represented by the integral307

expressions (16), (17) which can be used for solving boundary value problems for308

axial-symmetric potential solenoid fields.309

Let us note that if the boundary ∂Dz is a Jordan rectifiable curve and the function310

F belongs to the Smirnov class E1 (see, e.g., Privalov 1950, p. 205) in the domain311

Dz , then the formulas (16) and (17) can be transformed to the form312

ϕ(x, r) = 1

2πi

∫
∂Dz

F(t)√
(t − z)(t − z̄)

dt , (20)313

314

ψ(x, r) = − 1

2πi

∫
∂Dz

F(t) (t − x)√
(t − z)(t − z̄)

dt (21)315

for all (x, r) ∈ D, where F(t) are the angular boundary values of the function F316

which, as it is known (see, e.g., Privalov 1950, p. 205), exist at almost all points317

t ∈ ∂Dz . In the case where D is an unbounded domain, we admit additionally that318

the function F is vanishing at infinity for obtaining the formula (20) or the function319

F has a zero at least of the second order at infinity for obtaining the formula (21).320

In the papers Plaksa (2001), Mel’nichenko and Plaksa (2008) we established321

sufficient conditions for continuous continuations of the functions (20), (21) on the322

boundary ∂D of a domain D and obtained estimations for modules of continuity of323

boundary values of the mentioned functions.324

Using the integral expressions (20), (21) of axial-symmetric potentials and Stockes325

flow functions, we developed a functional analytic method for effective solving326

boundary problems in a meridian plane of spatial axial-symmetric potential field327

(see Plaksa 2001, 2002, 2003; Mel’nichenko and Plaksa 2008).328

467125_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:22/8/2018 Pages: 32 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f

Сергей
Вычеркивание

Сергей
Записка
"Mel'nichenko and"
must be deleted



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

14 S. A. Plaksa

8.2 Integral Equation for an Outer Dirichlet Boundary Value329

Problem for the Stokes Flow Function330

Below, let D be an unbounded domain in the meridian plane x Or and the boundary331

∂D is a closed Jordan rectifiable curve symmetric with respect to the axis Ox . The332

closure of domain D is denoted by D.333

Let us consider the following outer Dirichlet boundary value problem for the334

Stokes flow function: to find a continuous in D function ψ(x, r) which is a solution335

of Eq. (6) in D when its boundary values ψ∂D(x, r) are given on the boundary ∂D,336

i.e. ψ(x, r) = ψ∂D(x, r) for all (x, r) ∈ ∂D. It is also required that the function ψ is337

vanishing at infinity and satisfies the identity (19).338

Note that, vanishing at infinity and satisfying the identity (19), the Stokes flow339

function ψ(x, r) satisfies the maximum principle in the domain D. It follows from340

the maximum principle that a solution of the mentioned Dirichlet problem is unique.341

Let us remind that the boundary ∂Dz of domain Dz cross the real axis at the points342

b1, b2 and b1 < b2.343

For every z ∈ ∂Dz \ R , by �zz̄ we denote that Jordan subarc of the boundary344

∂Dz with the end points z and z̄ which contains the point b1. For z ∈ ∂Dz \ R345

let
√

(t − z)(t − z̄) be that continuous branch of the analytic function G(t) =346 √
(t − z)(t − z̄) outside of the cut along �zz̄ for which G(b2) > 0.347

The direction of the circuit of ∂Dz with the domain Dz to the left is taken to be348

the positive direction.349

If the function F has the properties stipulated in Theorem 7, then we shall call F350

the creative function for the function ψ(x, r).351

It is established in the papers Plaksa (2003), Mel’nichenko and Plaksa (2008) that352

the solution of the mentioned Dirichlet problem is expressed in the form (21), where353

the creative for ψ function F is a solution of the integral equation354

− 1

2πi

∫
∂Dz

F(t)(t − x)√
(t − z)(t − z̄)

dt = ψ∂D(x, r), ∀ (x, r) ∈ ∂D . (22)355

Here values of the function
√

(t − z)(t − z̄) for t ∈ �zz̄ are taken on the right side356

of the cut �zz̄ .357

In the papers Plaksa (2003), Mel’nichenko and Plaksa (2008) we developed a358

method for a transition of Eq. (22) to the Cauchy singular integral equation on the359

real axis.360

In a case important for applications where ∂Dz is a smooth curve satisfying certain361

additional requirements, then the mentioned singular integral equation is reduced to362

the Fredholm integral equation of the second kind. Moreover, it is established in363

Plaksa (2003), Mel’nichenko and Plaksa (2008) that in this case there exists the364

unique function F which satisfies Eq. (22) and is creative for the solution ψ(x, r) of365

the mentioned Dirichlet problem.366
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Axial-Symmetric Potential Flows 15

Let us note that we obtained the Fredholm integral equation for the Dirichlet367

boundary value problem for the Stokes flow function in the case where the boundary368

∂Dz belongs to a class being wider than the class of Lyapunov curves.369

Let us note else that in the case where ∂Dz is a circle, the solution F of Eq. (22)370

is obtained explicitly (see Plaksa 2003; Mel’nichenko and Plaksa 2008).371

9 Boundary Value Problem About a Steady Streamline372

of the Ideal Incompressible Fluid Along373

an Axial-Symmetric Body374

Consider an outer boundary problem having important applications in the hydrody-375

namics of potential flows.376

Let us consider the following problem about a steady streamline of the ideal377

incompressible fluid along an axial-symmetric body: to find a solution ψ1(x, r) of378

Eq. (6) in D that satisfies the condition379

ψ1(x, r) = 0 ∀ (x, r) ∈ ∂D ∪ {(x, r) ∈ D : r = 0} (23)380

and have the following asymptotic381

ψ1(x, r) = 1

2
v∞r2 + o(1), x2 + r2 →∞, v∞ > 0. (24)382

For the model of steady flow of the ideal incompressible fluid the condition (23)383

means that the boundary ∂D and the axis Ox are lines of flow. In the asymptotic384

(24) v∞ is a velocity of unbounded flow at infinity.385

We note that explicit solutions of such a problem are known in certain particular386

cases of steady streamline along an axial-symmetric body (see Lavrentyev and Shabat387

1977; Loitsyanskii 1987; Batchelor 1970; Weinstein 1953; Mel’nichenko and Pik388

1973, 1975).389

Inasmuch as the Stokes flow function

ψ(x, r) = ψ1(x, r)− 1

2
v∞r2

is vanishing at infinity, we can apply the integral expression (21) for solving the390

boundary value problem about a steady streamline of the ideal incompressible fluid391

along an axial-symmetric body.392

To solve this problem in such a way, we obtain the integral equation393

1

πi

∫
∂Dz

F(t)(t − x)√
(t − z)(t − z̄)

dt = v∞r2, (x, r) ∈ ∂D : r �= 0, (25)394
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16 S. A. Plaksa

where it is necessary to find the function F creative for ψ(x, r). Evidently, Eq. (25)395

is a particular case of Eq. (22).396

In addition, using the integral expression (21) for the Stokes flow function, in the397

papers Mel’nichenko and Plaksa (2003, 2008) we obtained some results having a398

natural physical interpretation. Namely, for a boundary problem about a streamline of399

the ideal incompressible fluid along an axial-symmetric body, we obtained criteria of400

solvability by means distributions of sources and dipoles on the axis of symmetry and401

constructed unknown solutions using multipoles together with dipoles distributed on402

the axis.403

9.1 Expressions of Solutions via Distributions of Sources404

on the Axis405

Consider a source located on the axis Ox at the point (x0, 0) with the intensity q.406

Such a source is simulated by means of analytic function F(t) = q/(t − x0) for407

which the following flow function corresponds by the formula (17):408

ψ(x, r) = −q
x − x0√

(x − x0)2 + r2
.409

As a result of an interaction between an flow of the ideal incompressible fluid410

oncoming with the velocity v∞ > 0 and a source with the intensity q > 0 located at411

the point (x1, 0) and a source with the intensity −q (i.e. a sink) located at the point412

(x2, 0) in the case x1 < x2 one can obtain the solution413

ψ1(x, r) = 1

2
v∞r2 − q

x − x1√
(x − x1)2 + r2

+ q
x − x2√

(x − x122 + r2
(26)414

of problem about a steady streamline of the ideal incompressible fluid along an axial-415

symmetric oval body, for which the boundary points satisfy the equalityψ1(x, r) = 0 .416

Lines of flow are given by the equations ψ1(x, r) = const (see, e.g., Lavrentyev and417

Shabat 1977, p. 201).418

In the case where x1 > x2, the function (26) is no solution of problem about a419

steady streamline because, evidently, there are exist no points satisfying the equality420

ψ1(x, r) = 0 for any x ∈ (x2, x1).421

If sources with intensities qk are located on the axis Ox in points (xk, 0), respec-
tively, then in order the function

ψ1(x, r) = 1

2
v∞r2 −

n∑
k=1

qk
x − xk√

(x − xk)2 + r2
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Axial-Symmetric Potential Flows 17

be a solution of the problem about a steady streamline, it is necessary (but it is not422

sufficient, generally speaking) that the total intensity of sources be423

n∑
k=1

qk = 0 . (27)424

Now, suppose that the function F(z) is analytic in C \ [a1, a2], where [a1, a2]425

is a segment of the real axis. Let F+(t) or F−(t) denote its boundary values on426

[a1, a2] when z→ t from a half-plane upper or lower with respect to the real axis,427

respectively. Denote by L p[a1, a2] the set of functions summable on [a1, a2] to the428

p th power.429

Using the Cauchy theorem, it is easy to prove the following theorem having a430

natural physical interpretation.431

Theorem 8 Suppose that the solution F of Eq. (25) has the form432

F(z) =
n∑

k=1

qk

z − x1,k
+ F1(z) , (28)433

where all x1,k belong to a segment [a1, a2], the equality (27) is fulfilled and the
function F1 can be continued to an analytic function outside of the segment [a1, a2]
and its boundary values F+1 (t), F−1 (t) belong to L p[a1, a2], p > 1. Then the solution
of the problem about steady streamline is given by the formula

ψ1(x, r) = v∞r2

2
−

n∑
k=1

qk
x − x1,k√

(x − x1,k)2 + r2
+

434

+
a2∫

a1

q(t)(t − x)√
(t − x)2 + r2

dt ∀ (x, r) ∈ D , (29)435

where

q(t) := − 1

2πi
(F+1 (t)− F−1 (t)) ≡ − 1

π
Im F+1 (t)

is the distribution density of intensity of sources on [a1, a2] which correspond to the436

function F1. Moreover, the total intensity of such sources is437

a2∫
a1

q(t) dt = 0. (30)438

Theorem 8 generalizes the corresponding theorem in Mel’nichenko and Plaksa439

(2003, 2008), where the case qk ≡ 0 was considered. Let us note that the formula440
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18 S. A. Plaksa

(29) with qk ≡ 0 is well-known classical result (see Lavrentyev and Shabat 1977,441

p. 201). At the same time, in this case, Theorem 8 enables to find the distribution442

density of sources intensity via boundary values of the creative function F1 on the443

set of sources distribution.444

It is easy to prove the following theorem converse to Theorem 8.445

Theorem 9 Suppose that the solution of the problem about steady streamline is446

given by the formula (29), where q(t) ∈ L p[a1, a2], p > 1, and the equalities (27),447

(30) are fulfilled. Then the solution F of Eq. (25) has the form (28), where the function448

F1 can be continued to the function analytic outside of the segment [a1, a2] and its449

boundary values F+1 (t), F−1 (t) belong to L p[a1, a2]. Moreover, in this case450

F1(z) = −
a2∫

a1

q(t)

t − z
dt ∀ z ∈ C \ [a1, a2]. (31)451

Theorem 9 generalizes the corresponding theorem in Mel’nichenko and Plaksa452

(2003, 2008), where the case qk ≡ 0 was considered.453

It is possible to rewrite the formula (29) in a more short form if to introduce a454

Lebesgue–Stieltjes measure generated by the following function of bounded varia-455

tion:456

μ(t) :=
t∫

a1

q(τ ) dτ +
n∑

k=1

qk θ(t − x1,k) , (32)457

where458

θ(τ ) :=
{

1 for τ ≥ 0,

0 for τ < 0
459

is the Heaviside function. Then the formula (29) can be rewritten as

ψ1(x, r) = v∞r2

2
+

a2∫
a1

(t − x)√
(t − x)2 + r2

dμ(t) ∀ (x, r) ∈ D .

We can use as well the following formal equality:

dμ(t) =
(

q(t)+
n∑

k=1

qk δ(t − x1,k)

)
dt ,

where δ is the Dirac delta function.460

Thus, for all (x, r) ∈ D , the formula (29) can be also rewritten as
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Axial-Symmetric Potential Flows 19

ψ1(x, r) = v∞r2

2
+

a2∫
a1

(
q(t)+

n∑
k=1

qkδ(t − x1,k)

)
(t − x)√

(t − x)2 + r2
dt .

Let’s agree that integrals on unlimited intervals of the real axis are understood in461

the sense of the principal value.462

The following theorem was essentially proved in Mel’nichenko and Plaksa (2003,463

2008).464

Theorem 10 The distribution density q(t) of intensity of sources, which correspond465

to the function F1, is expressed via values of the function (31) on the set (−∞, b1) ∪466

(b2,∞) in the form of the repeated integral467

q(t) = b2 − b1

2π2
√

(b2 − t)(t − b1)

∞∫
−∞

A(t, ξ)

∞∫
−∞

B(ξ, τ ) dτ dξ ∀ t ∈ [b1, b2]468

(33)469

in the case when it exists. Here

A(t, ξ) := ch (πξ) exp

(
iξ ln

t − b1

b2 − t

)
,

B(ξ, τ ) := − F(b1 + (b2 − b1)(cth τ
2 + 1)/2)

exp(τ )− 1
exp(−iτξ).

Proof Consider the integral equation (31), in which a1 = b1, a2 = b2 and z ∈470

(−∞, b1) ∪ (b2,∞). Using the change of variables t = b1 + (b2 − b1)
τ
τ+1 and471

z = b1 + (b2 − b1)
ξ
ξ−1 , we transform it to the integral equation472

∞∫
0

q∗(τ )
τ + ξ dτ = F∗(ξ), ξ > 0, (34)473

in which

F∗(ξ) := −F

(
b1 + (b2 − b1)

ξ

ξ − 1

)
/(ξ − 1)

and

q∗(τ ) := q

(
b1 + (b2 − b1)

τ

τ + 1

)
/(τ + 1).

Equation (34) is solvable explicitly (see, e.g., Zabreiko and al 1968, p. 30). As a474

result of the inversion of integral operator in Eq. (34), we obtain the expression (33)475

for the distribution density q(t) of intensity of sources on the segment [b1, b2]. The476

theorem is proved.477
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20 S. A. Plaksa

9.2 Expressions of Solutions via Distributions of Dipoles478

on the Axis479

Consider a dipole located on the axis Ox at the point (x0, 0). Let the moment p of480

dipole be directed along the axis Ox . We shall also call p by the intensity of dipole.481

Such a dipole is simulated by means of analytic function F(t) = p/(t − x0)
2 for482

which the following flow function corresponds by the formula (17):483

ψ(x, r) = p
r2

((x − x0)2 + r2)3/2
.484

It is well known that as a result of an interaction between an flow of the ideal485

incompressible fluid oncoming with the velocity v∞ > 0 and a dipole with the inten-486

sity −p located at the point (0, 0), one can obtain the picture of steady streamline487

along a ball with the radius R = 3

√
2p
v∞ and the center in the origin (see, e.g., Lavren-488

tyev and Shabat 1977, p. 200) Lines of flow are given by the equations489

ψ1(x, r) = v∞ r2

2
− p

r2

(x2 + r2)3/2
= const.490

Let us note that inasmuch as the solution F of Eq. (25) has a zero at least of the491

second order at infinity, then F has a primitive function F in D which is vanishing492

at infinity.493

Now, using the Cauchy theorem, it is easy to prove the following theorem having494

also a natural physical interpretation.495

Theorem 11 Suppose that the solution F of Eq. (25) has the form496

F(z) =
m∑

k=1

pk

(z − x2,k)2
+ F2(z) , (35)497

where all x2,k belong to a segment [a1, a2] and a primitive function F2 for the function
F2 can be continued to an analytic function outside of the segment [a1, a2] and its
boundary values F+2 (t),F−2 (t) belong to L p[a1, a2], p > 1. Then the solution of the
problem about steady streamline is given by the formula

ψ1(x, r) = v∞r2

2
+

m∑
k=1

pk
r2

((x − x2,k)2 + r2)3/2
−

498

− r2

a2∫
a1

p(t)

((t − x)2 + r2)3/2
dt ∀ (x, r) ∈ D , (36)499
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Axial-Symmetric Potential Flows 21

where

p(t) := − 1

2πi
(F+2 (t)− F−2 (t)) ≡ − 1

π
Im F+2 (t)

is the distribution density of intensity of dipoles on [a1, a2] which correspond to the500

function F2.501

It is also easy to prove the following theorem converse to Theorem 11.502

Theorem 12 Suppose that the solution of the problem about steady streamline is503

given by the formula (36), where p(t) ∈ L p[a1, a2], p > 1 . Then the solution F of504

Eq. (25) has the form (35), where the function F2 has a primitive function F2 that can505

be continued to an function analytic outside of the segment [a1, a2] and its boundary506

values F+2 (t),F−2 (t) belong to L p[a1, a2]. Moreover, in this case507

F2(z) = −
a2∫

a1

p(t)

t − z
dt ∀ z ∈ C \ [a1, a2]. (37)508

The following theorem is proved similarly to Theorem 10.509

Theorem 13 The distribution density p(t) of intensity of dipoles, which correspond
to the function F2, is expressed via values of the function (37) on the set (−∞, b1) ∪
(b2,∞) in the form of the repeated integral

p(t) = b2 − b1

2π2
√

(b2 − t)(t − b1)

∞∫
−∞

A(t, ξ)

∞∫
−∞

C(ξ, τ ) dτ dξ ∀ t ∈ [b1, b2]

in the case when it exists. Here the function A(t, ξ) is defined in Theorem10 and

C(ξ, τ ) := −F2(b1 + (b2 − b1)(cth τ
2 + 1)/2)

exp(τ )− 1
exp(−iτξ) .

Theorem 11–13 generalize the corresponding theorem in Mel’nichenko and Plaksa510

(2003, 2008), where the case pk ≡ 0 was considered.511

Let us note that for a source with the intensity q > 0 located at the point (x1, 0)

and a source with the intensity −q located at the point (x2, 0) in the case x1 < x2 ,
the following equality holds:

−q
x − x1√

(x − x1)2 + r2
+ q

x − x2√
(x − x2)2 + r2

=

= − r2

a2∫
a1

q

((t − x)2 + r2)3/2
dt ∀ (x, r) ∈ D .
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22 S. A. Plaksa

Therefore, such a pair of sources can be replaced by dipoles located on the512

segment [x1, x2] with the distribution density of their intensity p(t) = q for all513

t ∈ [x1, x2].514

Taking into account this note, it is easy to conclude that every solution of the515

problem about steady streamline of the form (29) is expressed also by the formula516

(36), where pk ≡ 0 , p(t) = μ(t) and the function μ(t) is defined by the equality517

(32).518

But among domains D for which the solution of the problem about steady stream-519

line is expressed by the formula (36), there are domains for which the function ψ1520

can not be expressed as (29). For example, the last statement is true in the case where521

there exists pk �= 0 in the equality (36). Thus, the class of domains for which the522

solution of the problem about steady streamline is given by the formula (36) is wider523

than the class of domains for which the solution of the mentioned problem is given524

by the formula (29).525

If to introduce the function

p̃(t) := p(t)−
m∑

k=1

pk δ(t − x2,k)

and a Lebesgue–Stieltjes measure generated by the following function of bounded
variation:

ν(t) :=
t∫

a1

p(τ ) dτ −
m∑

k=1

pk θ(t − x2,k) ,

then the formula (36) can be rewritten as

ψ1(x, r) = v∞r2

2
− r2

a2∫
a1

dν(t)

((t − x)2 + r2)3/2
=

526

= v∞r2

2
− r2

a2∫
a1

p̃(t)

((t − x)2 + r2)3/2
dt ∀ (x, r) ∈ D . (38)527

Let us note that if the function (38) is the solution of the problem about steady528

streamline and, in addition, p̃(t) ≥ 0 for all t ∈ [a1, a2], then the axial-symmetric529

body R
2 \ D is convex in the direction of the axis Or . It follows evidently from a530

monotonicity with respect to r2 of the integral in the formula (38).531
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Axial-Symmetric Potential Flows 23

Fig. 1 The streamline along a “pear”

9.3 Using Multipoles for a Construction of Solutions532

of the Problem About Steady Streamline533

At the same time, there are also domains for which it is necessary to use multipoles534

together with dipoles to obtain the solution of the problem about steady streamline.535

For example, the streamline along a “pear” is represented on Fig. 1. In this case,
lines of flow are given by the equations

ψ1(x, r) = r2

(
1, 7− 44(x + 2)

((x + 2)2 + r2)5/2
− 20

((x + 2, 245)2 + r2)3/2
−

− 1

((x − 1)2 + r2)3/2
− 1

((x − 2)2 + r2)3/2

)
= const.

The solution ψ1 is obtained by means of three dipoles located in the points
(−2, 245; 0), (1; 0), (2; 0) and a quadrupole located in the point (−2; 0). To construct
this solution, we use the formula (17) in which the flow function for a quadrupole

ψ(x, r) = − 44(x + 2)r2

((x + 2)2 + r2)5/2

corresponds to the creative function F(t) = − 88
3(t+2)3 . Let us note that in this case a536

“pear” R
2 \ D is not convex in the direction of the axis Or .537

The streamline along a “matreshka” is represented on Fig. 2. In this case, it turns538

out already that the body R
2 \ D is convex in the direction of the axis Or . Lines of539

flow are given by the equations540
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24 S. A. Plaksa

Fig. 2 The streamline along a “matreshka”

ψ1(x, r) = r2

(
1, 7− 44(x + 2)

((x + 2)2 + r2)5/2
− 20

((x + 2, 5)2 + r2)3/2
−

− 1

((x − 1)2 + r2)3/2
− 1

((x − 2)2 + r2)3/2

)
= const.

The change of the streamline picture is obtained due to a displacement of a dipole541

from the point (−2, 245; 0) into the point (−2, 5; 0).542

An essential specificity for applications is a fact that an use of multipoles can give543

no solution of the problem about steady streamline. A combination of dipoles and544

multipoles gives a streamline picture only if certain relations between their intensities545

are fulfilled.546

9.4 Interaction Between a Flow and a Pair “Dipole547

and Quadrupole”548

Let us consider an interaction between a flow of the ideal incompressible fluid oncom-549

ing with the velocity v∞ > 0 and a dipole and a quadrupole, which are located on550

the axis Ox .551

Let a quadrupole of intensity m be located at the point (0; 0) and a dipole of552

intensity p be located at the point (x0; 0), x0 �= 0.553

We consider two cases: x0 > 0 (see Fig. 3) and x0 < 0 (see. Fig. 4).554

(1) In the case where x0 > 0 we use the function555

ψ(x, r) = −m
3xr2

(x2 + r2)5/2
− p

r2

((x − x0)2 + r2)3/2
(39)556

that corresponds to the creative function F(t) = − 2m
t3 − p

(t−x0)2 in accordance with557

the formula (17).558
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Axial-Symmetric Potential Flows 25

Fig. 3 A Dipole is located on the right of a quadrupole

Fig. 4 A Dipole is located on the left of a quadrupole

If the intensity p of the dipole is small in comparison with the intensity m of the
quadrupole (the quantitative relation is formulated below), then the singularity (0, 0)

of the function ψ(x, r) is located on the boundary that has the equation
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26 S. A. Plaksa

v∞
2
+ ψ(x, r)

r2
= 0

which, taking into account the equality (39), we rewrite as559

v∞
2
− 3xm

(x2 + r2)5/2
− p

((x − x0)2 + r2)3/2
= 0. (40)560

Therefore, the function561

ψ1(x, r) = v∞r2

2
− m

3xr2

(x2 + r2)5/2
− p

r2

((x − x0)2 + r2)3/2
(41)562

is no solution of the problem about steady streamline.563

An increase of the dipole intensity results finally in formation of a closed contour
� for which coordinates of points satisfy the Eq. (40) and, moreover, the point (0, 0)

is located inside of the domain bounded by �. Then the equality (40) is fulfilled at a
point (x, 0) with x < 0, i.e. we have the following equality:

v∞
2
+ 3m

x4
− p

(x0 − x)3
= 0 ,

from which we find564

p = v∞
2

(x0 − x)3

(
1+ 6m

v∞x4

)
. (42)565

The equality (42) is fulfilled at a point (x, 0) with x < 0 if and only if

p ≥ v∞
2

min
x< 0

(
(x0 − x)3

(
1+ 6m

v∞ x4

))
=: c1 ,

and in this case the function (41) gives the solution of the problem about steady566

streamline for unbounded domain with the boundary �.567

Now, we can assert:568

(a) if p ≥ c1, then the function (41) is the solution of the problem about steady569

streamline for a certain domain D;570

(b) if p < c1, then there is no domain D, for which the function (41) would be571

the solution of the problem about steady streamline.572

One can see the examples of streamline picture in the cases p > c1 (the upper573

picture on Fig. 3) and p = c1 (the lower picture on Fig. 3).574

(2) In the case where x0 < 0 we conclude that if the point (0, 0) is located inside575

of the domain bounded by the contour �, then for each x ∈ [x0, 0] there exists a point576

(x, r) with r > 0 that the equality (40) is fulfilled, from which we find577
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p = v∞
2

((x − x0)
2 + r2)3/2

(
1− 6mx

v∞(x2 + r2)5/2

)
. (43)578

For each fixed x ∈ [x0, 0], the equality (43) is fulfilled at a point (x, r) with r > 0 if
and only if

p ≥ v∞
2

min
r≥0

(
(x − x0)

2 + r2)3/2

(
1− 6mx

v∞(x2 + r2)5/2

))
.

Finally, for each x ∈ [x0, 0] there exists a point (x, r) with r > 0 in which the equality
(43) is fulfilled if and only if

p ≥ v∞
2

max
x∈[x0, 0] min

r≥ 0

(
((x − x0)

2 + r2)3/2

(
1− 6mx

v∞ (x2 + r2)5/2

))
=; c2 .

Thus, the following statements are true:579

(a) if p ≥ c2 ,then the function (41) is the solution of the problem about steady580

streamline for a certain domain D;581

(b) if p < c2 , then there is no domain D, for which the function (41) would be582

the solution of the problem about steady streamline.583

One can see the examples of streamline picture in the cases p > c2 (the upper584

picture on Fig. 4) and p = c2 (the lower picture on Fig. 4).585

Let us note that the boundary ∂D is piecewise-smooth if p = c1 in the case where586

x0 > 0 (see the lower picture on Fig. 3) or p = c2 in the case where x0 < 0 (see the587

lower picture on Fig. 4). AQ1588
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constanţi de ordin oarecare. Studii şi Cercetǎri Matematice 6(3–4), 567–643 (1955)765
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