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of spatial variable
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Abstract. We proved a theorem about the integral of quaternionic-differentiable functions of spatial
variable over the closed surface. It is an analog of the Cauchy theorem from complex analysis.
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1. Introduction

Several researchers (see, e.g., [1,2]) tried to generalize methods of complex analysis onto the analysis
of functions acting in several-dimensional algebras. At that, generalizations of different but mutually
equivalent definitions of holomorphy in complex analysis generate diverse classes of hyperholomorphic
functions in several-dimensional algebras.

Hypercomplex analysis in the space R3 was launched in the work of G. Moisil and N. Theodoresco
[3], where a three-dimensional analog of the Cauchy–Riemann system was posed for the first time.
R. Fueter [4] first introduced a class of “regular” quaternion functions by means of a four-dimensional
generalization of the Moisil–Theodoresco system. He proved quaternion analogs of the Cauchy theorem,
integral Cauchy formula, and Liouville theorem and constructed an analog of the Laurent series.

Now, quaternion analysis gained a wide evolution (more details can be found in [1, 5–7]) due to
its physical applications. In most works, it was usual to consider functions having continuous partial
derivatives in a domain and satisfying the above Cauchy–Riemann-type system. In particular in [1], a
spatial analog of the Cauchy theorem was proved, by using the quaternion Stokes formula for bounded
domains with a piecewise-smooth boundary and for functions having continuous partial derivatives in
the closure of the domain.

In the survey paper [6], the continuity of partial derivatives was replaced by a weaker condition of
real-differentiability for components of the quaternion function. In [8], we considered the same class
of functions defined in a three-dimensional domain with a piecewise-smooth boundary and requiring
only the componentwise real-differentiability and satisfying the Cauchy–Riemann-type conditions, like
the class of holomorphic functions in complex analysis (see, e.g., [9]).

In the present work, we will extend the result in [8] onto a wider class of surfaces, by using methods
of work [10], where a similar theorem was proved for functions taking values in finite-dimensional
commutative associative algebras.
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2. Quaternion hyperholomorphic functions

Let H(C) be the associative algebra of complex quaternions

a =

3∑
k=0

akik,

where {ak}3k=0 ⊂ C, i0 = 1 and i1, i2, i3 be the imaginary quaternion units with the multiplication
rule i21 = i22 = i23 = i1i2i3 = −1. The module of a quaternion is defined by the formula

|a| :=

√√√√ 3∑
k=0

|ak|2.

Lemma 2.1 ( [11]). |ab| 6
√
2 |a| |b| for all {a; b} ⊂ H(C).

For {zk}3k=1 ⊂ R, consider the vector quaternions z := z1i1+ z2i2+ z3i3 as points of the Euclidean
space R3 with the basis {ik}3k=1. Let Ω be a domain of R3. For functions f : Ω → H(C) having
first-order partial derivatives, consider the differential operators

Dl[f ] :=

3∑
k=1

ik
∂f

∂zk
,

Dr[f ] :=
3∑

k=1

∂f

∂zk
ik.

Definition 2.1. The function f := f0 + f1i1+ f2i2+ f3i3 is called left- or right-H-differentiable at a
point z(0) ∈ R3, if its components f0, f1, f2, and f3 are R3-differentiable functions in z(0), and if the
condition

Dl[f ](z
(0)) = 0 (2.1)

or
Dr[f ](z

(0)) = 0

holds true, respectively.

There is the notion of C-differentiability of a function f(ζ) = u(x, y) + v(x, y)i, ζ = x + yi, in
complex analysis (see [9, p. 33–34]). It is equivalent to R2-differentiability at the point (x0, y0) of the
components u(x, y) and v(x, y) and to the validity of the condition

∂f(ζ0)

∂x
+
∂f(ζ0)

∂y
i = 0.

Thus, the above-defined notion of H-differentiability is the exact analog of C-differentiability from
complex analysis.

It is well known (see [9, p. 35]) that the C-differentiability of a complex function is equivalent to
the existence of its derivative. But only the linear functions of a special form have a derivative in
quaternion analysis (see [12]).

The operator Dl is called the Dirac operator (see [13]) or the Moisil–Theodoresco operator (see [14])
and equality (2.1) is equivalent to the Moisil–Theodoresco system [3].

Definition 2.2. A function f is called left- or right-hyperholomorphic in a domain Ω, if it is left-
or right-H-differentiable at every point of the domain.
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3. Quaternion surface integral

Consider the notions of surface and closed surface like those defined in work [10].

Definition 3.1. A surface Γ ⊂ R3 is an image of the closed set G ⊂ R2 under a homeomorphic
mapping φ : G→ R3

φ(u, v) := (z1(u, v), z2(u, v), z3(u, v)), (u, v) ∈ G,

such that the Jacobians

A :=
∂z2
∂u

∂z3
∂v

− ∂z2
∂v

∂z3
∂u

, B :=
∂z3
∂u

∂z1
∂v

− ∂z3
∂v

∂z1
∂u

, C :=
∂z1
∂u

∂z2
∂v

− ∂z1
∂v

∂z2
∂u

exist almost everywhere on the set G and are summable on G.

The area of the surface Γ is calculated by the formula

L(Γ) =
∫∫
G

√
A2 +B2 + C2dudv,

where the integral is understood in the Lebesgue sense.
A surface Γ is called quadrable (see [10]), if L(Γ) < +∞.
Let Γ ⊂ R3 be an image of the sphere S ⊂ R3 under such homeomorphic mapping ψ : S → R3

that the image of a great circle γ on the sphere S is a closed Jordan rectifiable curve γ̃ on the set
Γ. The sphere S is the union of two half-spheres S1 and S2 with the common edge γ. It is easy
to see that there exist continuously differentiable mappings φ1 : K → S1, φ2 : K → S2 of the disk
K := {(u, v) ∈ R2 : u2+ v2 6 1}. So the set Γ is the union of two sets Γ1 = ψ(φ1(K)), Γ2 = ψ(φ2(K))
with the intersection γ̃ = ψ(φ1(∂K)) = ψ(φ2(∂K)).

Definition 3.2. A set Γ is called a closed surface, if there exist such homeomorphic mapping ψ : S →
R3 that the sets Γ1, Γ2 are surfaces in the sense of Definition 3.1, and the orientation of the circle
∂K induces two mutually opposite orientations of the curve γ̃ under the mappings ψ ◦ φ1 and ψ ◦ φ2,
respectively.

Let Γε :=
{
z ∈ R3 : ρ(z,Γ) 6 ε

}
(ρ denotes the Euclidean distance) be a closed ε-neighborhood

of the surface Γ, let V (Γε) be the space Lebesgue measure of the set Γε, and let M∗(Γ) := lim
ε→0

V (Γε)
2ε

be the two-dimensional upper Minkowski content (see [15, p. 79]) of the surface Γ. For the functions
f : Γ → H(C) and g : Γ → H(C) in the case of non-closed quadrable surface Γ, the quaternion surface
integral is defined by the formula∫∫

Γ

f(z)σ g(z) :=

∫∫
G

f(φ(u, v))(Ai1 +Bi2 + Ci3)g(φ(u, v))du dv,

where σ := dz2dz3i1 + dz3dz1i2 + dz1dz2i3, and, in the case of a closed surface, by the formula∫∫
Γ

f(z)σ g(z) :=

∫∫
Γ1

f(z)σ g(z) +

∫∫
Γ2

f(z)σ g(z).

In particular,
∫∫
Γ

|σ| = L(Γ).
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Theorem 3.1 ( [8]). Let P be the surface of a closed cube contained in a simply connected domain
Ω ⊂ R3, let a function f : Ω → H(C) be right-hyperholomorphic, and let a function g : Ω → H(C) be
left-hyperholomorphic. Then ∫∫

P

f(z)σ g(z) = 0.

Let δ > 0, let ωΓ(f, δ) := sup
|z1−z2|6δ

z1,z2 ∈Γ

|f(z1)− f(z2)| be the module of continuity of a function f on

Γ, and let d(Γ) be the diameter of Γ.

Lemma 3.1 ( [10]). Let Γ be a quadrable closed surface. Then∫∫
Γ

σ = 0. (3.1)

Lemma 3.2. Let Γ be a quadrable closed surface, and let f : Ω → H(C) and g : Ω → H(C) be
continuous functions. Then∣∣∣∣∣∣

∫∫
Γ

f(z)σ g(z)

∣∣∣∣∣∣ 6 2L(Γ)
(
ωΓ(f, d(Γ)) max

z∈Γ
|g(z)|+ ωΓ(g, d(Γ)) max

z∈Γ
|f(z)|

)
. (3.2)

Proof. In view of formula (3.1), we have∫∫
Γ

f(z0)σ g(z0) = 0

for any point z0 ∈ Γ. Therefore,∫∫
Γ

f(z)σ g(z) =

∫∫
Γ

(f(z)− f(z0))σ g(z0) +

∫∫
Γ

f(z)σ (g(z)− g(z0)),

which yields estimate (3.2) with regard for Lemma 2.1.

Theorem 3.2. Let R3 ⊃ Ω be a bounded simply connected domain with the quadrable closed boundary
Γ, for which

M∗(Γ) < +∞, (3.3)

let Ω have Jordan measurable intersections with planes perpendicular to coordinate axes, let a function
f : Ω → H(C) be right-hyperholomorphic in Ω and continuous in the closure Ω, and let a function
g : Ω → H(C) be left-hyperholomorphic in Ω and continuous in Ω. Then∫∫

Γ

f(z)σ g(z) = 0. (3.4)

Proof. Let us use the method proposed in work [10] in the proof of Theorem 6.1. Due to condition
(3.3), there exists such constant c > 0 that, for all sufficiently small ε > 0, the following inequality
holds:

V (Γε) 6 cε. (3.5)
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Decompose the space by planes perpendicular to the coordinate axes onto closed cubes with the
edge ε√

3
in length. Let {Kj}, j ∈ J , be a finite set of formed cubes having a nonempty intersection

with the surface Γ.
The integral (3.4) is representable in the form∫∫

Γ

f(z)σ g(z) =
∑
j∈J

∫∫
∂(Ω∩Kj)

f(z)σ g(z) +
∑

Kj⊂Ω

∫∫
∂Kj

f(z)σ g(z). (3.6)

By Theorem 3.1, the second sum in equality (3.6) is equal to zero.
Every set Ω∩Kj consists of a finite or infinite totality of connected components. Applying estimate

(3.2) to the boundary of the every component, we obtain∣∣∣∣∣∣∣
∫∫

∂(Ω∩Kj)

f(z)σ g(z)

∣∣∣∣∣∣∣ 6 2(L(Γ ∩Kj) + 2ε2)

(
ωΓ(f, ε) max

z∈Ω
|g(z)| + ωΓ(g, ε) max

z∈Ω
|f(z)|

)
. (3.7)

Substituting inequality (3.7) into equality (3.6), we obtain∣∣∣∣∣∣
∫∫
Γ

f(z)σ g(z)

∣∣∣∣∣∣ 6 2

L(Γ) + 2
∑
j∈J

ε2

(ωΓ(f, ε) max
z∈Ω

|g(z)|+ ωΓ(g, ε) max
z∈Ω

|f(z)|
)
.

Since
∪
j∈J

Kj ⊂ Γε, we obtain from inequality (3.5) that

1

3
√
3

∑
j∈J

ε3 6 V (Γε) 6 cε.

Therefore, ∣∣∣∣∣∣
∫∫
Γ

f(z)σ g(z)

∣∣∣∣∣∣ 6 2(L(Γ) + 6
√
3c)

(
ωΓ(f, ε) max

z∈Ω
|g(z)|+ ωΓ(g, ε) max

z∈Ω
|f(z)|

)
,

and equality (3.4) can be obtained from here by passing to the limit as ε→ 0.
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