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Abstract. In the paper we construct a counterpart of classical results on the generalized (l, d)- equian-
gular system points on the rays in the case of arbitrary multidimensional complex spaces.

Introduction

This paper belongs to the theory of extremal problems on classes of non-overlapping domain, in the 
case of arbitrary multidimensional complex spaces. The begin of these investigations associated, in 
space C, with the paper of M.A. Lavrent’ev [1] in 1934. He found the maximum of some functional 
with respect to two simply connected domains with two fixed points. We note that this result was 
needed him for applying to some aerodynamics problems. In 1947, G.M. Goluzin solved a similar 
problem for three fixed points on the complex plane [2]. Then the topic began to evolve rapidly. 
In this connection we may recall papers of many authors, including Y.E. Alenitsina, M.A. Lebedev, 
J. Jenkins, P.M. Tamrazov, P.P. Kufareva and others. Using the idea of P.M. Tamrazov, in 1975
G.P. Bakhtin solved first the problem with so-called ”free poles” on the unit circle, see, e.g., [3].

An important step for the development of this topic was papers of V.N. Dubinin. He developed a 
new method of research that is method of piecewise-separating transformation. He also first solved 
numerous of extremal problems for an arbitrary but fixed multiconnected non-overlapping domains 
(see, e.g., [4], [5], [6]). Now this type of extremal problems is used for investigations in holomorphic 
dynamics.

In the last decade actively used Bakhtin’s method of ”managing functional”. He managed to solve 
a series of extremal problems for so-called ”radial systems of points” (see, e.g., [4], [7]–[13]).

In the space Cn, n ≥ 2, the first results were obtained in [14]–[16]. In the present paper, we use
these results.

Theory in C

LetN,R,C be sets natural, real and complex numbers, conformably,C = C
∪
{∞} andR+ = (0,∞).

Then let l,m, d ∈ N, thusm = ld. We will consider the set of natural numbers {mk}lk=1 such that
l∑

k=1

mk = m. (1)

System points
Al,d :=

{
ak,p ∈ C : k = 1, l, p = 1,mk

}
,

we will called on the generalized (l, d)-equiangular system points on the rays, if she meets a condition
(1), and at all k = 1, l, p = 1,mk the relations are executed:

0 < |ak,1| < . . . < |ak,mk
| < ∞;

arg ak,1 = arg ak,2 = . . . = arg ak,mk
= 2π

l
(k − 1).

(2)
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Arbitrary generalized (l, d)-equiangular system points with the variable amount of points on the
rays Al,d the set of domains is comparable {Pk}lk=1, where

Pk :=

{
w ∈ C\{0} :

2π

l
(k − 1) < argw <

2π

l
k

}
, k = 1, l.

”Managing” functional we will consider for arbitrary generalized (l, d)-equiangular system points
with the variable amount of points on the rays Al,d

µ (Al,d) :=
l∏

k=1

mk∏
p=1

[
χ

(∣∣∣ak,p∣∣∣n2) |ak,p|
]
,

where χ(t) = 1
2
· (t+ t−1) .

Let {B0, Bk,p, B∞}— arbitrary non-overlapping domains such, that

0 ∈ B0, ak,p ∈ Bk,p, ∞ ∈ B∞, B0, Bk,p, B∞ ⊂ C, k = 1, l, p = 1,mk.

Let
gB (z, a) = hB,a(z) + log

1

|z − a|
generalized Green’s function of domains B with respect to a point a ∈ B. If a = ∞, then

gB (z,∞) = hB,∞(z) + log
1

|z|
.

The value of
r(B, a) := exp (hB,a(z))

the define of inner radius domain B ⊂ C with respect to a point a ∈ B (see [4], [5], [6], [17], [18],
[19]).

We use the concept of a quadratic differential. Recall that a quadratic differential on a Riemann
surface S is a map

φ : TS → C

satisfying
φ(λυ) = λ2φ(υ)

for all υ ∈ TS and all λ ∈ C, TS – tangent space. If z ∈ U → C, is a chart defined on some open set
U ⊂ S then φ is equal on U to

φU(z)dz
2

for some function φU defined on z(U).
Suppose that two charts z : U → C and w : V → C on S overlap, and let

h := w ◦ z−1

be the transition function. If φ is represented both as φU(z)dz
2 and φV (w)dw

2 on U ∩ V , then we
have

φV (h(z)) (h′(z))
2
= φU(z).

One way to say this is that quadratic differentials transform under pull-backs by the square of the
derivative. As the main results associated with it can be found in [20].
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For arbitrary l, d ∈ N, n ≥ 2 let A(1)
l,d the define generalized (l, d)-equiangular system points the

formed by poles of the quadratic differential Q1(w)dw
2, where

Q1(w)dw
2 = − wl−2(1 + wl)2d−1[

(1− iw
l
2 )2d+1 − (1 + iw

l
2 )2d+1

]2 dw2.

LetA(2)
l,d – the define generalized (l, d)-equiangular system points the formed by poles of the quadratic

differential Q2(w)dw
2, where

Q2(w)dw
2 =

wl−2(1 + wn)2d−1[
(1− iw

l
2 )2d+1 + (1 + iw

l
2 )2d+1

]2 dw2.

LetA(3)
l,d – the define generalized (l, d)-equiangular system points the formed by poles of the quadratic

differential Q3(w)dw
2, where

Q3(w)dw
2 = −

wl−2
(
1 + wl

)2d[(
1− iw

l
2

)2d+2

−
(
1 + iw

l
2

)2d+2
]2 dw2.

LetA(4)
l,d – the define generalized (l, d)-equiangular system points the formed by poles of the quadratic

differential Q4(w)dw
2, where

Q4(w)dw
2 = − wl−2(1 + wl)2d−2[(

1− iw
l
2

)2d
+
(
1 + iw

l
2

)2d]2 .
For system points A(1)

l,d , A
(2)
l,d , A

(3)
l,d , A

(4)
l,d in ratios (2) the condition is satisfiedmk = d, k = 1, l.

Theory in Cn

The main results of this section can be found in [14] – [16].
Space Cn. It is a well-known fact that the complex space Cn is a linear vector space over the

complex numbers with the Hermitian product

(Z ·W) =
n∑

k=1

zkwk,

where Z = {zk}nk=1 ∈ Cn,W = {wk}nk=1 ∈ Cn.
Algebra Cn. A binary operation acting from Cn × Cn into Cn by the rule

Z ·W = {zkwk}nk=1 (3)

is called vector multiplication of elements Cn; here Z = {zk}nk=1 ∈ Cn,W = {wk}nk=1 ∈ Cn.
This operation turns Cn into a commutative, associative algebra with unit 1 = (1, 1, ..., 1) ∈ Cn.
Elements Z = {zk}nk=1 ∈ Cn such that zk ̸= 0 for all k = 1, n are invertible with respect

to the defined operation of multiplication. The inverse to such elements Z ∈ Cn are the elements
Z−1 = {z−1

k }nk=1 ∈ Cn, since Z · Z−1 = Z−1 · Z = 1.
We denote by Θ the set of all non-invertible elements, i.e. a = {ak}nk=1 ∈ Cn whose at least one

coordinate ak = 0. For n = 1 the equality (3) provides the usual multiplication of complex numbers.
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It is well-known that multiplication (3) admits a presentation of Cn as a direct sum of n copies of
the algebra C.

Conjugation. One of the important notions in the algebra C is the notion of conjugate number.
Given W = {wk}nk=1 ∈ Cn we introduce the vector conjugate element by W = {wk}nk=1 ∈ Cn,

where wk denotes the complex conjugate number wk in the usual sense.
The so defined correspondence is an automorphismCn which leaves fixed the subspaceRn ⊂ Cn.

For n = 1 the vector conjugate number coincides with the complex conjugate one.
Vector module. An another crucial notion in the algebraC is the module of complex number. The

following definition presents its analogue in Cn.
Let Rn

+ = R+ × R+ × . . . × R+. A vector |Z| := {|zk|}nk=1 ∈ Rn
+ is called the vector module of

Z = {zk}nk=1 ∈ Cn.
Thus, the vector module is a mapping from Cn into Rn

+. This embedding allows to obtain, in
particular, the Reinhart domains in Cn.

Note that for any Z = {zk}nk=1 ∈ Cn, we have

Z · Z = |Z|2 = |Z|2.

Vector norm. A vector X = {xk}nk=1 ∈ Rn is called non-negative and denoted by X ≥ O, if
xk ≥ 0 for all k = 1, n; here O = (0, 0, . . . , 0). If in addition xk > 0 for some k, we call X strongly
positive.

We say that the vector X = {xk}nk=1 ∈ Rn is greater than or equal to a vector Y = {yk}nk=1 ∈ Rn,
if X− Y ≥ O, or correspondingly strongly greater when X− Y > O.

These definitions for n = 1 coincide with the usual comparison of real numbers.
For n > 1 the situation becomes quite different. For example, the vectorO is greater than or equal

to all vectors whose coordinates are all non-positive and is less than or equal to all vectors from Rn
+.

Vectors X with two coordinates of different signs are not comparable with the vector O.
Now let us introduce a vector norm ∥Y∥ for any Y ∈ Cn by
1) ∥Y∥ ≥ O, and moreover ∥Y ∥ = O ⇐⇒ Y = O;
2) ∥γY∥ = |γ|∥Y∥ ∀γ ∈ C;
3) ∥Y1 + Y2∥ ≤ ∥Y1∥+ ∥Y2∥ ∀Y1,Y2 ∈ Cn.
Thus, the vector module is a vector norm in the algebra Cn. In this way an open unit ball in

the algebra Cn is the open unit polydisk ∥Z∥ < 1, (1 = (1, 1, . . . , 1)), and a unit sphere is the n-
dimensional torus Tn = {Z ∈ Cn : ∥Z∥ = 1}.

Note that
a) |Z1 · Z2| = ∥Z1 · Z2∥ = ∥Z1∥∥Z2∥ = |Z1||Z2|, ∀Z1,Z2 ∈ Cn;
b) |1| = ∥1∥ = 1.
Vector argument. Now we define a vector argument of n-dimensional complex numbers A =

{ak}nk=1 ∈ Cn\Θ as an n-dimensional real vector by

Arg A = {Arg ak}nk=1.

Representation of n-dimensional complex number in vector cartesian form. For any Z =
{zk}nk=1 ∈ Cn one can write

Z = {zk}nk=1 = {Re zk + iIm zk}nk=1 = {Re zk}nk=1 + {iIm zk}nk=1 =

= {Re zk}nk=1 + i{Im zk}nk=1 = Re Z+ iImZ = X+ iY =

= {xk}nk=1 + i{yk}nk=1 ∈ Rn + iRn,
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where X = Re Z = {Re zk}nk=1 = {xk}nk=1, Y = Im Z = {Im zk}nk=1 = {yk}nk=1. Thus, Cn =
Rn + iRn.

Presentation of n-dimensional complex numbers in vector polar form. We can write the ele-
ments Z of Cn in the form

Z =


z1
z2
...
zn

 =


|z1|eiα1

|z2|eiα2

...
|zn|eiαn

 =


|z1|
|z2|
...

|zn|



eiα1

eiα2

...
eiαn

 =

= |Z|



cosα1

cosα2
...

cosαn

+ i


sinα1

sinα2
...

sinαn


 = |Z| [cosArg Z+ i sinArg Z] =

= |Z|eiArg Z = |Z| exp iArg Z,

where

cos β =


cos β1

cos β2
...

cos βn

 , sin β =


sin β1

sin β2
...

sin βn

 ,

exp iβ =


exp iβ1

exp iβ2
...

exp iβn

 , β =


β1

β2
...
βn

 ∈ Rn, Z =


z1
z2
...
zn

 ∈ Cn.

A polycylindrical domain in Cn is defined a follows:

B = B1 ×B2 × ...×Bn, Bq ⊂ C, q = 1, 2, .., n.

The domains Bq, q = 1, 2, .., n, are called coordinate domains.
Let Ω (a1, a2, ..., an) be the point of the space Cn with coordinates aq, q = 1, 2, ..., n.
A generalized inner radius of the polycylindrical domain B at the point Ω,Ω ∈ B is defined as

follows:

r (B,Ω) =

(
n∏

q=1

r (Bq, aq)

) 1
n

,

where r(Bq, aq) is the inner radius of the coordinate domain Bq at the point aq.

Some results in the theory non-overlapping domains

In this section we mention some of the results in the space C, which will be carried by us in the space
Cn.

Theorem 1 [11]. Let l,m, d ∈ N,m = ld, l ≥ 2. Then for arbitrary generalized (l, d)-equiangular
system points Al,d = {ak,p} the satisfied condition (2),

µ (Al,d) = µ
(
A

(1)
l,d

)
,
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with set of numbers {mk}lk=1 the satisfied condition (1), and arbitrary set non-overlapping domains
{B0, Bk,p}, 0 ∈ B0, ak,p ∈ Bk,p, B0, Bk,p ⊂ C, be satisfied inequality

r
l2

4 (B0, 0) ·
l∏

k=1

mk∏
p=1

r (Bk,p, ak,p) ≤
(

8

2m+ l

)m

·
(

2l

2m+ l

) l
2

· µ
(
A

(1)
l,d

)
.

Theorem 2. [11]. Let l,m, d ∈ N,m = ld, l ≥ 2. Then for arbitrary generalized (l, d)-equiangular
system points Al,d = {ak,p} the satisfied condition (2),

µ (Al,d) = µ
(
A

(2)
l,d

)
,

with set of numbers {mk}lk=1 the satisfied condition (1), and arbitrary set non-overlapping domains
{Bk,p, B∞}, ∞ ∈ B∞, ak,p ∈ Bk,p, Bk,p, B∞ ⊂ C, be satisfied inequality

r
l2

4 (B∞,∞) ·
l∏

k=1

mk∏
p=1

r (Bk,p, ak,p) ≤
(

8

2m+ l

)m

·
(

2l

2m+ l

) l
2

· µ
(
A

(2)
l,d

)
.

Theorem 3. [9]. Let l,m, d ∈ N,m = ld, l ≥ 2. Then for arbitrary generalized (l, d)-equiangular
system points Al,d = {ak,p} the satisfied condition (2),

µ (Al,d) = µ
(
A

(3)
l,d

)
,

with set of numbers {mk}lk=1 the satisfied condition (1), and arbitrary set non-overlapping domains
{B0, Bk,p, B∞}, 0 ∈ B0,∞ ∈ B∞, ak,p ∈ Bk,p, B0, Bk,p, B∞ ⊂ C, be satisfied inequality

(r (B0, 0) · r (B∞,∞))
l2

4 ·
l∏

k=1

mk∏
p=1

r (Bk,p, ak,p) ≤
(

4

l +m

)m

·
(

l

l +m

)l

· µ
(
A

(3)
l,d

)
.

Theorem4. [10]. Let l,m, d ∈ N,m = ld, l ≥ 2. Then for arbitrary generalized (l, d)-equiangular
system points Al,d = {ak,p} the satisfied condition (2),

µ (Al,d) = µ
(
A

(4)
l,d

)
,

with set of numbers {mk}lk=1 the satisfied condition (1), and arbitrary set non-overlapping domains
{Bk,p}, ak,p ∈ Bk,p ⊂ C be satisfied inequality

l∏
k=1

mk∏
p=1

r (Bk,p, ak,p) ≤
(

4

ld

)ld

· µ
(
A

(4)
l,d

)
.

Main results in the space Cn

Theorem 5. Let l,m, d ∈ N, m = ld, l ≥ 2, set of numbers {mk}lk=1 the satisfied condition (1).
Consider a system polycylindrical domains

B0 = B
(0)
1 ×B

(0)
2 × ...×B(0)

n ,
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Bk,p = B
(k,p)
1 ×B

(k,p)
2 × ...×B(k,p)

n , B(0)
q , B(k,p)

q ⊂ C, q = 1, n, k = 1, l, p = 1,mk,

and points

Ω0 = (0, 0, ..., 0), Ωk,p =
(
a
(k,p)
1 , a

(k,p)
2 , ..., a(k,p)n

)
, k = 1, l, p = 1,mk,

in the space Cn satisfying the following conditions:

1)Ω0 ∈ B0, Ωk,p ∈ Bk,p, k = 1, l, p = 1,mk,

2) For q = 1, 2, ..., n system points
{
a
(k,p)
q , a

(k,p)
q , ..., a

(k,p)
q

}
, n ≥ 2, is the generalized (l, d)-

equiangular system points on the rays in space C, the satisfied condition (2),

µ (Al,d) = µ
(
A

(1)
l,d

)
,

k = 1, l, p = 1,mk.
3) For q = 1, 2, .., n, the domains B(0)

q , B
(k,p)
q , B

(k,p)
q , ..., B

(k,p)
q , n ≥ 2, are pairwise disjoint in C,

k = 1, l, p = 1,mk.
Then the following inequality is true:

r
l2

4 (B0,Ω0) ·
l∏

k=1

mk∏
p=1

r (Bk,p,Ωk,p) ≤
(

8

2m+ n

)m

·
(

2l

2m+ n

)n
2

· µ
(
A

(1)
n,d

)
.

Theorem 6. Let l,m, d ∈ N, m = ld, l ≥ 2, set of numbers {mk}lk=1 the satisfied condition (1).
Consider a system polycylindrical domains

B∞ = B
(∞)
1 ×B

(∞)
2 × ...×B(∞)

n ,

Bk,p = B
(k,p)
1 ×B

(k,p)
2 × ...×B(k,p)

n , B(∞)
q , B(k,p)

q ⊂ C, q = 1, n, k = 1, l, p = 1,mk,

and points

Ω∞ = (∞,∞, ...,∞), Ωk,p =
(
a
(k,p)
1 , a

(k,p)
2 , ..., a(k,p)n

)
, k = 1, l, p = 1,mk,

in the space Cn satisfying the following conditions:

1)Ω∞ ∈ B∞, Ωk,p ∈ Bk,p, k = 1, l, p = 1,mk,

2) For q = 1, 2, ..., n system points
{
a
(k,p)
q , a

(k,p)
q , ..., a

(k,p)
q

}
, n ≥ 2, is the generalized (l, d)-

equiangular system points on the rays in space C, the satisfied condition (2),

µ (Al,d) = µ
(
A

(2)
l,d

)
,

k = 1, l, p = 1,mk.
3) For q = 1, 2, .., n, the domains B(k,p)

q , B
(k,p)
q , ..., B

(k,p)
q , B

(∞)
q , n ≥ 2, are pairwise disjoint in

C, k = 1, l, p = 1,mk.
Then the following inequality is true:

r
l2

4 (B∞,Ω∞) ·
l∏

k=1

mk∏
p=1

r (Bk,p,Ωk,p) ≤
(

8

2m+ l

)m

·
(

2l

2m+ l

) l
2

· µ
(
A

(2)
l,d

)
.
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Theorem 7. Let l,m, d ∈ N, m = ld, l ≥ 2, set of numbers {mk}lk=1 the satisfied condition (1).
Consider a system polycylindrical domains

B0 = B
(0)
1 ×B

(0)
2 × ...×B(0)

n , B∞ = B
(∞)
1 ×B

(∞)
2 × ...×B(∞)

n ,

Bk,p = B
(k,p)
1 ×B

(k,p)
2 × ...×B(k,p)

n , B(0)
q , B(∞)

q , B(k,p)
q ⊂ C, q = 1, n, k = 1, l, p = 1,mk,

and points

Ω0 = (0, 0, ..., 0), Ω∞ = (∞,∞, ...,∞), Ωk,p =
(
a
(k,p)
1 , a

(k,p)
2 , ..., a(k,p)n

)
, k = 1, l, p = 1,mk,

in the space Cn satisfying the following conditions:

1).Ω0 ∈ B0, Ω∞ ∈ B∞, Ωk,p ∈ Bk,p, k = 1, l, p = 1,mk,

2). For q = 1, 2, ..., n system points
{
a
(k,p)
q , a

(k,p)
q , ..., a

(k,p)
q

}
, n ≥ 2, is the generalized (l, d)-

equiangular system points on the rays in space C, the satisfied condition (2),

µ (Al,d) = µ
(
A

(3)
l,d

)
,

k = 1, l, p = 1,mk.
3).For q = 1, 2, .., n, the domainsB(0)

q , B
(k,p)
q , B

(k,p)
q , ..., B

(k,p)
q , B

(∞)
q , n ≥ 2, are pairwise disjoint

in C, k = 1, l, p = 1,mk.
Then the following inequality is true:

(r (B0,Ω0) · r (B∞,Ω∞))
l2

4 ·
l∏

k=1

mk∏
p=1

r (Bk,p,Ωk,p) ≤
(

4

l +m

)m

·
(

l

l +m

)l

· µ
(
A

(3)
l,d

)
.

Theorem 8. Let l,m, d ∈ N, m = ld, l ≥ 2, set of numbers {mk}lk=1 the satisfied condition (1).
Consider a system polycylindrical domains

Bk,p = B
(k,p)
1 ×B

(k,p)
2 × ...×B(k,p)

n , B(k,p)
q ⊂ C, q = 1, n, k = 1, l, p = 1,mk,

and points
Ωk,p =

(
a
(k,p)
1 , a

(k,p)
2 , ..., a(k,p)n

)
, k = 1, l, p = 1,mk,

in the space Cn satisfying the following conditions:

1)Ωk,p ∈ Bk,p, k = 1, l, p = 1,mk,

2) For q = 1, 2, ..., n system points
{
a
(k,p)
q , a

(k,p)
q , ..., a

(k,p)
q

}
, n ≥ 2, is the generalized (l, d)-

equiangular system points on the rays in space C, the satisfied condition (2),

µ (Al,d) = µ
(
A

(4)
l,d

)
,

k = 1, l, p = 1,mk.
3) For q = 1, 2, .., n, the domains B

(k,p)
q , B

(k,p)
q , ..., B

(k,p)
q , n ≥ 2, are pairwise disjoint in C,

k = 1, l, p = 1,mk.
Then the following inequality is true:

l∏
k=1

mk∏
p=1

r (Bk,p,Ωk,p) ≤
(

4

ld

)ld

· µ
(
A

(4)
l,d

)
.
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Proof of Theorem 5. Using the definition of a space Cn inner radius, we have

r (B0,Ω0) =

(
n∏

q=1

r
(
B(0)

q , 0
)) 1

n

, r (Bk,p,Ωk,p) =

(
n∏

q=1

r
(
B(k,p)

q , a(k,p)
)) 1

n

,

where, respectively, r
(
B

(0)
q , 0

)
and r

(
B

(k,p)
q , ak,p

)
– inner radius domains B(0)

q and B
(k,p)
q , with re-

spect to a points 0 ∈ B
(0)
q and ak,p ∈ B

(k,p)
q , q = 1, 2, .., n in space C.

Then,

r
l2

4 (B0,Ω0) ·
l∏

k=1

mk∏
p=1

r (Bk,p,Ωk,p) =
n∏

q=1

(
r

l2

4

(
B(0)

q , 0
)
·

l∏
k=1

mk∏
p=1

r
(
B(k,p)

q , a(k,p)
)) 1

n

.

Using Theorem 4, we obtain the final result. The theorem is proved.

Similarly, we prove Theorems 6, 7, 8.
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