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Abstract. We consider a class of so-called quaternionic G-monogenic mappings associated with m-
dimensional (m ∈ {2, 3, 4}) partial differential equations and propose a description of all mappings
from this class by using four analytic functions of complex variable. For G-monogenic mappings we
generalize some analogues of classical integral theorems of the holomorphic function theory of the
complex variable (the surface and the curvilinear Cauchy integral theorems, the Cauchy integral for-
mula, the Morera theorem), and Taylor’s and Laurent’s expansions. Moreover, we investigated the
relation between G-monogenic and H-monogenic (differentiable in the sense of Hausdorff) quater-
nionic mappings.
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Introduction

The quaternionic analysis was formed long ago. It is now extensively developed as a separate direction
of mathematics due to its numerous applications in various fields, mainly in mathematical physics and
differential equations (see, e.g., [1, 2]). The realization of this approach requires the introduction of
special classes of quaternionic ”differentiable” functions whose components satisfy certain systems
of differential equations of the Cauchy–Riemann type.

The quaternionic analysis in the space R3 was originated by Moisil and Theodoresco [3] who pro-
posed, for the first time, a three-dimensional analog of the Cauchy–Riemann system of equations.
They introduced the notion of holomorphic vector as a quaternion-valued vector function whose com-
ponents are continuously differentiable and satisfy the above-mentioned system, which was called the
Moisil–Theodoresco system. In the same paper [3], the authors proved an analog of the Morera theo-
rem and analogues of the integral Cauchy formula. The investigations originated in [3] were continued
in [4], where the notion of Cauchy-type integral was introduced, the existence of its boundary values
was investigated, and the applications of this integral to systems of singular integral equations were
discussed.

In [5], Fueter constructed a four-dimensional generalization of the Moisil–Theodoresco system
and proved analogues of the classical results of complex analysis for regular functions introduced
by him. These results were generalized in [6] and, together with the applications to some models
of mathematical physics, presented in the monograph [2]. It is also worth noting that the so-called
α-holomorphic functions f investigated in [2] satisfy the three-dimensional Helmholtz equation

(∆3 + α)f :=
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
+ αf = 0,

where α is a quaternion.
The last investigations in this field (see, e.g., [7],[8],[9]) can be regarded as various generalizations

of the results obtained in [2].
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Another (relatively new) direction of quaternionic analysis in R3 and R4 is represented by the
so-called modified quaternionic analysis originated by Leutwiler in the early 1990s (see, e.g., [10] —
[12]). In the Leutwiler construction inR3, the first two components of his hyperholomorphic functions
f = u(x, y, z) + iv(x, y, z) + jw(x, y, z) (where i and j are basis quaternionic units) satisfy the
Laplace–Beltrami equation

z∆3u−
∂u

∂z
= 0,

and the third component w satisfies the equation

z2∆3w − z
∂w

∂z
+ w = 0.

In [10] one can find the expansion of a hyperholomorphic function in a series in a system of
quaternionic polynomials. For more information see [13], [14].

Unlike [2], [3], [5], [6], in the Leutwiler approach, a power function is hyperholomorphic and the
partial derivatives of a hyperholomorphic function are also hyperholomorphic. At the same time, there
exists a relationship between both directions described above (see [12]).

We can also mention one more contemporary theory in the quaternionic analysis, namely, the
theory of socalled s-regular functions introduced by Gentili and Struppa in [15] on the basis of devel-
opment of Cullen’s idea [16]. This idea can be formulated as follows: Let

x = x0 + x1i+ x2j + x3k =: x0 + ℑx,

where x0, x1, x2, x3 are real numbers and i, j, k are basis quaternionic units. Every quater-
nion x = x0 + ℑx with x ̸= x0 can be represented in the form of a ”complex number” with
new imaginary unit I: x = x0 + I |ℑx|, where I := ℑx

|ℑx| and | · | is the modulus of quaternion.
It is clear that I2 = −1. In the same form, one can also represent a quaternion-valued function:
f(x) = U(x0, |ℑx|) + I V (x0, |ℑx|).

Then the function f is called an s-regular function (see [15]) if the ”complex-valued” function
f = U + IV is a holomorphic function of the ”complex” variable x = x0 + I |ℑx|. It is obvious that
all quaternionic polynomials are s-regular. At present, the theory of s-regular functions is extensively
developed (see [17, 18, 19, 20]).

The mentioned variety of different approaches poses a natural question of classification of gener-
alized analytic function theories [21]. Such a classification can be derived from the symmetry group
of respective theory. Moreover, it is possible to build new theories from a given group representation
following the scheme in [22, 23].

Algebra of quaternions is a partial case of Clifford algebras [24]. Therefore, different approaches
in quaternionic analysis can find their generalizations in Clifford algebras. This problem becomes
especially interesting if we note that function theories in higher dimensions has important applications
in mathematical and theoretical physics, in mechanics of continua etc. (see, for example, [25, 26, 27]).

In the paper [28], we introduced a special class of mappings in the algebra of complex quater-
nions, which is not covered by the above-mentioned theories. Note that the commutative algebra
of bicomplex numbers (or of Segre commutative quaternions [29, 30]) is a subalgebra of the alge-
bra of complex quaternions H(C). In this subalgebra, we selected a three-dimensional real subspace,
E3, and consider mappings Φ defined in a domain Ω of this subspace E3 and taking values in the
entire algebra of complex quaternions. These mappings are continuous and Gâteaux differentiable.
They are called G-monogenic and represent the main object of our investigations. It is shown that
not only quaternionic polynomials but also quaternionic power series are G-monogenic. Moreover,
in the paper [28], we proposed a constructive description of all G-monogenic mappings of the form
Φ : E3 ⊃ Ω → H(C) based on the use of four analytic functions of complex variable. As a con-
sequence, the Gâteaux derivative of a G-monogenic mapping is, in turn, a G-monogenic mapping.
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In addition, we study the relationship between G-monogenic mappings and three-dimensional partial
differential equations. In particular, we discuss several applications of monogenic mappings to the
construction of solutions of the three-dimensional Laplace equation.

In the paper [31], we proved analogues of classical integral theorems of the holomorphic function
theory: the Cauchy integral theorems for surface and curvilinear integrals, and the Cauchy integral
formula for G-monogenic mappings of the form Φ : E3 ⊃ Ω → H(C). Furthermore, in [32] was
proved a curvilinear Cauchy integral theorem for G-monogenic mappings in the case where a curve
of integration lies on the boundary of a domain of G-monogeneity.

The analogues of the Cauchy integral theorems (see [31]) are of the form∫
Γ

Φ̂σ = 0,

∫
Γ

σΦ = 0,

where Γ is a closed surface (or a closed curve), σ is a special differential form, and Φ̂, Φ are left-G-
monogenic mapping and right-G-monogenic mapping, respectively.

In the paper [33] we generalized analogues of the surface and curvilinear Cauchy integral theorems
forG-monogenic mappings to ”two sides” integrals. Namely, under some assumptions we proved the
equality ∫

Γ

Φ̂σΦ = 0. (1)

Taylor’s and Laurent’s expansions of G-monogenic mappings of the form Φ : E3 ⊃ Ω → H(C)
are obtained and singularities of these mappings are classified in the paper [34].

In [35], we introduce quaternionic H-monogenic (differentiable in the sense of Hausdorff) map-
pings and establish a relation betweenG- andH-monogenic mappings which are defined in a domain
of the space E3. The equivalence of different definitions of a G-monogenic mapping is proved.

In the present paper we generalize all results of the papers [28], [31] – [35] for quaternionic G-
monogenic mappings which are defined in a domain of the space Em ,m ∈ {2, 3, 4}.

The Algebra of Complex Quaternion

Let us consider the algebra of quaternion H(C) over the field of complex numbers C with the basis
{1, I, J,K}, whose elements satisfy the following multiplication rules:

I2 = J2 = K2 = −1,

IJ = −JI = K, JK = −KJ = I, KI = −IK = J.

In the algebra H(C) there exists another basis {e1, e2, e3, e4}:

e1 =
1

2
(1 + iI), e2 =

1

2
(1− iI), e3 =

1

2
(iJ −K), e4 =

1

2
(iJ +K),

where i is the complex imaginary unit. The multiplication table in the new basis has the form (see
[36])

· e1 e2 e3 e4

e1 e1 0 e3 0
e2 0 e2 0 e4
e3 0 e3 0 e1
e4 e4 0 e2 0

, (2)

where the unit of the algebra is decomposed as 1 = e1 + e2.
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It is easily seen, that the basis vectors {e1, e2} are idempotents, which form a semi-simple algebra.
Note also that this subalgebra is the algebra of bicomplex numbers or the Segre algebra of commutative
quaternion [29].

Recall that (see, e. g., [37, p. 64]), a subset I ⊂ H(C) is called the right ideal if the condition
x ∈ I implies that xy ∈ I, and a subset I is called the left ideal if the condition x ∈ I implies that
yx ∈ I for any y ∈ H(C).

The algebra H(C) contains two right maximal ideals

I1 := {λ2e2 + λ4e4 : λ2, λ4 ∈ C}, I2 := {λ1e1 + λ3e3 : λ1, λ3 ∈ C}

and two left maximal ideals

Î1 := {λ2e2 + λ3e3 : λ2, λ3 ∈ C}, Î2 := {λ1e1 + λ4e4 : λ1, λ4 ∈ C}.

Since the radical consists only of the zero element, the algebra H(C) is semi-simple (see, e. g. [38, p.
146]).

The obvious equalities

I1 ∩ I2 = Î1 ∩ Î2 = 0, I1 ∪ I2 = Î1 ∪ Î2 = H(C)

yield the following decomposition into the direct sum:

H(C) = I1 ⊕ I2 = Î1 ⊕ Î2.

We introduce linear functionals f1 : H(C) → C and f2 : H(C) → C by setting

f1(e1) = f1(e3) = 1, f1(e2) = f1(e4) = 0,

f2(e2) = f2(e4) = 1, f2(e1) = f2(e3) = 0,

where maximal ideals I1, I2 are kernels of the functionals f1, f2, i. e. f1(I1) = f2(I2) = 0. We also
define linear functionals f̂1 : H(C) → C and f̂2 : H(C) → C by the equalities

f̂1(e1) = f̂1(e4) = 1, f̂1(e2) = f̂1(e3) = 0,

f̂2(e2) = f̂2(e3) = 1, f̂2(e1) = f̂2(e4) = 0.

It is clear that f̂1(Î1) = f̂2(Î2) = 0.
Note that the mentioned functionals f1, f2 are continuous and right-multiplicative, and the func-

tionals f̂1, f̂2 are continuous and left-multiplicative (see [28]).

G-Monogenic Mappings

Let us consider vectors i1 = 1, i2, . . . , im in H(C), where m ∈ {2, 3, 4}, which are linearly indepen-
dent over the field of real numbers R (see, e.g., [39]). It means that the equality

m∑
u=1

αuiu = 0, αu ∈ R,

holds if and only if αu = 0 for all u = 1, 2, . . . ,m.
Suppose that the vectors i1, i2, . . . , im have the following decompositions with respect to the basis

{e1, e2}:
i1 = e1 + e2 , iu = aue1 + bue2 , (3)

au, bu ∈ C, u = 2, 3, . . . ,m.
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Consider the linear span Em :=
{
ζ =

m∑
u=1

xuiu : xu ∈ R
}
generated by the vectors i1, i2, . . . , im

over the field of real numbers R. It is obvious that

ξ1 := f1(ζ) = x1 +
m∑

u=2

au xu,

ξ2 := f2(ζ) = x1 +
m∑

u=2

bu xu

and an element ζ ∈ Em can be represented in the form ζ = ξ1e1 + ξ2e2.
Denote by fk(Em) := {fk(ζ) : ζ ∈ Em} for k = 1, 2. Note that in the further investigation,

it is essential assumption: fk(Em) = C, where fk(Em) is the image of Em under the mapping fk.
Obviously, it holds if and only if at least one of the numbers in the sets (a2, . . . , am) and (b2, . . . , bm)
belongs to C \ R.

With a set S ⊂ Rm we associate the set

Sζ :=
{
ζ =

m∑
u=1

xuiu : (x1, x2, . . . , xm) ∈ S
}

inEm. Note that topological properties of the setSζ inEm are understood as corresponding topological
properties of the set S in Rm.

Let Ωζ be a domain in Em.
A continuous mapping Φ : Ωζ → H(C) (or Φ̂ : Ωζ → H(C)) is called right-G-monogenic

(
or

left-G-monogenic
)
in the domain Ωζ ⊂ Em if Φ

(
or Φ̂

)
is differentiable in the sense of Gâteaux at

every point of Ωζ , i. e. for every ζ ∈ Ωζ there exists the element Φ′(ζ) ∈ H(C)
(
or Φ̂′(ζ) ∈ H(C)

)
such that

lim
ε→0+0

Φ(ζ + εh)− Φ(ζ)

ε
= hΦ′(ζ) ∀h ∈ Em (4)(

or lim
ε→0+0

Φ̂(ζ + εh)− Φ̂(ζ)

ε
= Φ̂′(ζ)h ∀h ∈ Em

)
,

where Φ′(ζ) is the right Gâteaux derivative of the mapping Φ and Φ̂′(ζ) is the left Gâteaux derivative
of the mapping Φ̂ at the point ζ .

Consider the decomposition of a mappingΦ : Ωζ → H(C)with respect to the basis {e1, e2, e3, e4}:

Φ(ζ) =
4∑

q=1

Uq(x1, x2, . . . , xm) eq . (5)

In the case where functions Uq : Ω → C areR-differentiable in Ω, i. e. for every (x1, x2, . . . , xm) ∈ Ω

Uq (x1 +∆x1, x2 +∆x2, . . . , xm +∆xm)− Uq(x1, x2, . . . , xm) =

=
m∑

u=1

∂Uq

∂xu
∆xu + o

√√√√ m∑
u=1

(∆xu)2

 ,

m∑
u=1

(∆xu)
2 → 0 ,

the mapping Φ is right-G-monogenic and Φ̂ is left-G-monogenic in the domain Ωζ if and only if (cf.
Theorem 1 [28]) the following analogues of Cauchy – Riemann conditions are satisfied in Ωζ :

∂Φ

∂xu
= iu

∂Φ

∂x1
(6)
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and
∂Φ̂

∂xu
=
∂Φ̂

∂x1
iu , (7)

respectively, for u = 2, 3, . . . ,m.
Below, it will be shown that all components Uq of the G-monogenic mapping (5) are infinitely

R-differentiable in Ω.
We now consider examples of right- and left-G-monogenicmappings. In view of the representation

ζ = ξ1e1 + ξ2e2 for the element ζ and the table of multiplication for the algebra H(C), we obtain

ζn = ξn1 e1 + ξn2 e2.

By using conditions (6) and (7), we readily verify that the mappingΦ(ζ) = ζn is simultaneously right-
and left-G-monogenic in the entire space Em (cf. [30]). Similarly, we check that the mapping

Φ(ζ) =
n∑

k=0

ζk ck, ck ∈ H(C)

is right-G-monogenic in Em and the mapping

Φ̂(ζ) =
n∑

k=0

ck ζ
k, ck ∈ H(C)

is left-G-monogenic in Em ,m ∈ {2, 3, 4}.

A Constructive Description of G-Monogenic Mappings

In the next lemma we obtain an expansion of the resolvent (t − ζ)−1 in such a way as in Lemma 2
[28].

Lemma1. An expansion of the resolvent is of the form

(t− ζ)−1 =
1

t− ξ1
e1 +

1

t− ξ2
e2 (8)

∀ t ∈ C : t ̸= ξ1, t ̸= ξ2.

It follows from Lemma 1 that points (x1, x2, . . . , xm) ∈ Rm corresponding to the non-invertible
elements ζ =

m∑
u=1

xuiu ∈ H(C) form the set

M1 :


x1 +

m∑
u=2

xu ℜ au = 0,

m∑
u=2

xuℑ au = 0,

M2 :


x1 +

m∑
u=2

xu ℜ bu = 0,

m∑
u=2

xuℑ bu = 0

in them-dimensional space Rm. Also we consider the setMk
ζ := {ζ ∈ Em : fk(ζ) = 0} for k = 1, 2,

which is congruent with the setMk ⊂ Rm.
A domain Ωζ ⊂ Em is called convex with respect to the set of directions Mk

ζ if it contains the
segment {ζ1 + α(ζ2 − ζ1) : α ∈ [0, 1]} for all ζ1, ζ2 ∈ Ωζ such that ζ2 − ζ1 ∈Mk

ζ .
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Lemma2. Suppose that a domain Ωζ ⊂ Em is convex with respect to the set of directions Mk
ζ and

fk(Em) = C for k = 1, 2. Suppose also that a mapping Φ : Ωζ → H(C) is right-G-monogenic in the
domain Ωζ . If points ζ1, ζ2 ∈ Ωζ are such that ζ2 − ζ1 ∈Mk

ζ , then

Φ(ζ2)− Φ(ζ1) ∈ Ik. (9)

Proof. Inasmuch as fk(Em) = C, then there exists the element i∗2 ∈ Em such that fk(i∗2) = i.
Consider the linear span E∗ := {ζ∗ = xi∗1 + yi∗2 + zi∗3 : x, y, z ∈ R} of the vectors
i∗1 := 1, i∗2, i

∗
3 := ζ2 − ζ1.

Let (x1, y1, z1), (x2, y2, z2) be points of the domain Ω such that the segment that connects them is
parallel to the straight line {αi∗3 : α ∈ R}.

In the domain Ω we construct two surfaces with common edge, namely a surface Q that contains
the point (x1, y1, z1) and a surfaceΣ that contains the point (x2, y2, z2), such that the restrictions of the
functional fk to the corresponding subsets Qζ∗ and Σζ∗ of the domain Ωζ ∩E∗ are bijections of these
subsets to the same domainDk of the complex plane, and, moreover, at every point ζ∗0 ∈ Qζ∗ (or ζ∗0 ∈
Σζ∗), one has

lim
ε→0+0

Φ(ζ∗0 + ε(ζ∗ − ζ∗0 ))− Φ(ζ∗0 )

ε
= Φ′(ζ∗0 )(ζ

∗ − ζ∗0 ) (10)

for all ζ∗ ∈ Qζ∗ such that ζ∗0 + ε(ζ∗ − ζ∗0 ) ∈ Qζ∗ (or, respectively, for all ζ∗ ∈ Σζ∗ such that
ζ∗0 + ε(ζ∗ − ζ∗0 ) ∈ Σζ∗) for any ε ∈ (0, 1).

As the surfaceQ in the domain Ω, we take a fixed equilateral triangle with verticesA1, A2 andA3

centered at the point (x1, y1, z1) the plane of which is perpendicular to the straight line {αi∗3 : α ∈ R}.
We now continue the construction of the surface Σ.

Consider the triangle with vertices A1, A2 and A3 centered at the point (x2, y2, z2), lying in the
domain Ω, and such that its sides A′

1A
′
2, A′

2A
′
3, A′

1A
′
3 are parallel to the segments A1A2, A2A3, A1A3,

respectively, and have smaller lengths than the sides of the triangle A1A2A3. Since the domain Ω is
convex in the direction of the straight line {αi∗3 : α ∈ R}, we conclude that the prism with vertices
A′

1, A
′
2, A

′
3, A

′′
1, A

′′
2, A

′′
3 such that the points A′′

1, A
′′
2, A

′′
3 lie in the plane of the triangle A1A2A3 and its

edges A′
sA

′′
s , s = 1, 2, 3, are parallel to the straight line {αi∗3 : α ∈ R} is completely contained in Ω.

We now fix a triangle with vertices B1, B2, B3 such that the point Bs lies on the segment A′
sA

′′
s

for s = 1, 2, 3 and the truncated pyramid with vertices A1, A2, A3, B1, B2, B3 and lateral edges AsBs,
s = 1, 2, 3, is completely contained in the domain Ω.

Finally, in the plane of the triangle A′
1A

′
2A

′
3, we fix a triangle T with vertices C1, C2, C3 such that

its sides C1C2, C2C3, C1C3 are parallel to the segments A′
1A

′
2, A′

2A
′
3, A′

1A
′
3, respectively, and have

smaller lengths than the sides of the triangle A′
1A

′
2A

′
3. By construction, the truncated pyramid with

vertices B1, B2, B3, C1, C2, C3 and lateral edges BsCs, s = 1, 2, 3, is completely contained in the
domain Ω.

LetΣ denote the surface formed by the triangle T and the lateral surfaces of the truncated pyramids
A1A2A3B1B2B3 and B1B2B3C1C2C3.

Since the surfacesQ andΣ have a common edge, the setsQζ∗ andΣζ∗ aremapped by the functional
fk onto the same domainDk of the complex plane. In the domainDk, we define two complex-valued
functions H1 and H2 such that, for every ξk ∈ Dk, one has

H1(ξk) := fk(Φ(ζ
∗)), where ξk = fk(ζ

∗) and ζ∗ ∈ Qζ∗ ,

H2(ξk) := fk(Φ(ζ
∗)), where ξk = fk(ζ

∗) and ζ∗ ∈ Σζ∗ .

Taking into account that ζ1 ∈ Qζ∗ and ζ2 ∈ Σζ∗ , we have

H1(ξk) := fk(Φ(ζ1)), where ξk = fk(ζ1) and ζ1 ∈ Qζ∗ ,

H2(ξk) := fk(Φ(ζ2)), where ξk = fk(ζ2) and ζ2 ∈ Σζ∗ .
(11)
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Let us show that H1 and H2 are functions of the complex variable ξk analytic in Dk. Note that,
acting by the functional fk on equality (10) and using the linearity, continuity, and multiplicativity of
the functional, we get

lim
ε→0+0

fk
(
Φ(ζ∗0 + ε(ζ∗ − ζ∗0 ))

)
− fk(Φ(ζ

∗))

ε
= fk(Φ

′(ζ∗0 ))(fk(ζ
∗)− fk(ζ

∗
0 )).

This implies that the functions H1 and H2 have derivatives at the point fk(ζ∗0 ) ∈ Dk in all directions,
and, furthermore, these derivatives are equal for each of the functionsH1 andH2. Therefore, according
to Theorem 21 in [40], the functions H1 and H2 are analytic in the domain Dk.

According to the definition of the functionsH1 andH2 , we haveH1(ξk) ≡ H2(ξk) on the boundary
of the domainDk. By virtue of the analyticity of the functionsH1 andH2 in the domainDk, the identity
H1(ξk) ≡ H2(ξk) holds everywhere in Dk. Consequently, taking into account the relations (11), for
ζ1 := x1i1 + y1i2 + z1i3 and ζ2 := x2i1 + y2i2 + z2i3, we have

fk(Φ(ζ2)− Φ(ζ1)) = fk(Φ(ζ2))− fk(Φ(ζ1)) = H2(ξk)−H1(ξk) = 0,

i.e., Φ(ζ2)− Φ(ζ1) belongs to the kernel Ik of the functional fk. The Lemma is proved.
The proof of the next lemma is similar.

Lemma3. Suppose that a domain Ωζ ⊂ Em is convex with respect to the set of directions Mk
ζ and

fk(Em) = C for k = 1, 2. Suppose also that a mapping Φ̂ : Ωζ → H(C) is left-G-monogenic in the
domain Ωζ . If points ζ1, ζ2 ∈ Ωζ are such that ζ2 − ζ1 ∈Mk

ζ , then

Φ̂(ζ2)− Φ̂(ζ1) ∈ Îk.

Now, similar to the proof of Theorem 2 [28] can be proved the following statements.

Theorem4. Every right-G-monogenic mapping Φ : Ωζ → H(C) in the domain Ωζ can be expressed
in the form

Φ(ζ) = Φ1(ζ) + Φ2(ζ),

where Φ1 : Ωζ → I1, Φ2 : Ωζ → I2 are the certain right-G-monogenic in the domain Ωζ mappings
taking values in the right maximal ideals I1, I2.

Proof. It follows from the decomposition of the unit 1 = e1+e2 that any mappingΦ : Ωζ → H(C)
expressed in the form

Φ = e1Φ + e2Φ,

where e1Φ ∈ I2 and e2Φ ∈ I1.
We introduce the notation Φ1 := e2Φ, Φ2 := e1Φ and show that the mappings Φ1, Φ2 are right-

G-monogenic in the domain Ωζ . To this end, we multiply from left the equality (4) by e1:

lim
ε→0+0

e1
Φ(ζ + εh)− Φ(ζ)

ε
= e1hΦ

′(ζ) ∀h ∈ Em. (12)

Since elements e1 and h belong to the commutative subalgebra with the basis {e1, e2}, we
have e1h = he1. The equality (12) yields the equality

lim
ε→0+0

e1Φ(ζ + εh)− e1Φ(ζ)

ε
= he1Φ

′(ζ),

which proves that the mapping Φ2 is right-G-monogenic in the domain Ωζ . Similarly we prove that
the mapping Φ1 is also right-G-monogenic. The Theorem is proved.
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Theorem5. Every left-G-monogenic mapping Φ̂ : Ωζ → H(C) in the domain Ωζ can be expressed in
the form

Φ̂(ζ) = Φ̂1(ζ) + Φ̂2(ζ), (13)

where Φ̂1 : Ωζ → Î1, Φ̂2 : Ωζ → Î2 are certain left-G-monogenic in the domain Ωζ mappings taking
values in the left maximal ideals Î1, Î2.

Denote by

D1 := f1(Ωζ) =
{
ξ1 = x1 +

m∑
u=2

auxu : (x1, x2, . . . , xm) ∈ Ω
}
,

D2 := f2(Ωζ) =
{
ξ2 = x1 +

m∑
u=2

buxu : (x1, x2, . . . , xm) ∈ Ω
}

that domain in the complex plane C, onto which the domain Ωζ is mapped by the functionals f1, f2.

Lemma6. Suppose that a domain Ω ⊂ Rm is convex with respect to the set of directions Mk and
fk(Em) = C for k = 1, 2. Suppose also that a function V : Ω → C satisfies the equalities

∂V

∂xu
= au

∂V

∂x1
(14)

for u = 2, 3, . . . ,m in Ω. Then V is a holomorphic function of the variable ξ1 in the domain D1.

Proof. At first we separate the real and the imaginary parts of the expression

ξ1 = x1 +
m∑

u=2

xuℜ au + i
m∑

u=2

xu ℑ au =: τ1 + iη1

and note that the equalities (17) yield
∂V

∂η1
ℑ au = i

∂V

∂τ1
ℑ au. (15)

It follows from the condition f1(Em) = C that at least one of the numbers ℑ au is not equal to
zero. Therefore, using the relation (15), we get

∂V

∂η1
= i

∂V

∂τ1
.

Now we prove that
V (x′1, x

′
2, . . . , x

′
m) = V (x′′1, x

′′
2, . . . , x

′′
m) (16)

for points
(x′1, x

′
2, . . . , x

′
m), (x

′′
1, x

′′
2, . . . , x

′′
m) ∈ Ω

such that the segment connecting these points is parallel to the straight line Lk ⊂Mk. To this end we
use considerations of the proof of Lemma 2. Since f1(Em) = C, there exists the element i∗2 ∈ Em

such that f1(i∗2) = i. Consider the linear span

E∗ := {ζ = xi∗1 + yi∗2 + zi∗3 : x, y, z ∈ R}

of the vectors i∗1 := 1, i∗2, i
∗
3 = ζ ′−ζ ′′, where ζ ′ :=

m∑
u=1

x′uiu, ζ
′′ :=

m∑
u=1

x′′uiu. Now the relation (16) can

be proved in such away as in the proof of Lemma 5.3 [41], where onemust takeΩζ∩E∗, {αi∗3 : α ∈ R}
instead of Ωζ , L, respectively.

Thus, the function V : Ω → C of the type V (x1, x2, . . . , xm) := F (ξ1), where F (ξ1) is an arbitrary
holomorphic function in the domainD1, is a general solution of the system (17). The Lemma is proved.
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Lemma7. Suppose that a domain Ω ⊂ Rm is convex with respect to the set of directions Mk and
fk(Em) = C for k = 1, 2. Suppose also that a function V : Ω → C satisfies the equalities

∂V

∂xu
= bu

∂V

∂x1
(17)

for u = 2, 3, . . . ,m in Ω. Then V is a holomorphic function of the variable ξ2 in the domain D2.

The next theorem describes all right-G-monogenic mappings taking values in the ideals I1 and I2

using holomorphic functions of the corresponding complex variable.

Theorem8. Suppose that a domain Ωζ ⊂ Em is convex with respect to the set of directionsMk
ζ and

fk(Em) = C for k = 1, 2. Then every right-G-monogenic in the domain Ωζ mapping Φ1 : Ωζ → I1

taking values in the ideal I1 can be expressed in the form

Φ1(ζ) = F2(ξ2)e2 + F4(ξ2)e4, (18)

where F2, F4 are certain holomorphic in the domain D2 functions of the variable ξ2, and every right-
G-monogenic mapping Φ2 : Ωζ → I2 taking values in the ideal I2 can be expressed in the form

Φ2(ζ) = F1(ξ1)e1 + F3(ξ1)e3, (19)

where F1, F3 are certain holomorphic in the domain D1 functions of the variable ξ1.

Proof. Inasmuch as the mapping Φ1 takes values in the ideal I1, we have

Φ1(ζ) = V2(x1, x2, . . . , xm)e2 + V4(x1, x2, . . . , xm)e4, (20)

where V2 : Ω → C and V4 : Ω → C.
The mapping Φ1 satisfies conditions of the right-G-monogeneity (6) for Φ = Φ1. Substituting

relations (3) and (20) into these conditions and taking into account the uniqueness of the decomposi-
tion of elements of the algebra H(C) in the basis {e1, e2, e3, e4}, we obtain the following system of
equations for the determination of the functions V2 and V4:

∂V2
∂xu

= bu
∂V2
∂x1

,
∂V4
∂xu

= bu
∂V4
∂x1

, u = 2, 3, . . . ,m. (21)

Using Lemma 7, we obtain

V2(x1, x2, . . . , xm) = F2(ξ2), V4(x1, x2, . . . , xm) = F4(ξ2)

and the mapping Φ1 represented in the form (18).
By analogy, we establish that the mapping Φ2 is represented in the form (19). The Theorem is

proved.
The following theorem, which is proved in such a way as Theorem 8, describes all left-G-monogenic
mappings taking values in the ideals Î1 and Î2 bymeans of holomorphic functions of the corresponding
complex variable.

Theorem9. Suppose that a domain Ωζ ⊂ Em is convex with respect to the set of directionsMk
ζ and

fk(Em) = C for k = 1, 2. Then every left-G-monogenic in the domain Ωζ mapping Φ̂1 : Ωζ → Î1

taking values in the ideal Î1 can be expressed in the form

Φ̂1(ζ) = F̂2(ξ2)e2 + F̂3(ξ2)e3, (22)

where F̂2, F̂3 are certain holomorphic in the domain D2 functions of the variable ξ2, and every left-
G-monogenic Φ̂2 : Ωζ → Î2 taking values in the ideal Î2 can be expressed in the form

Φ̂2(ζ) = F̂1(ξ1)e1 + F̂4(ξ1)e4, (23)

where F̂1, F̂4 are certain holomorphic in the domain D1 functions of the variable ξ1.
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Using Theorem 4 and Theorem 8, we have the following statement.

Theorem10. If a domainΩζ ⊂ Em is convex with respect to the set of directionsMk
ζ and fk(Em) = C

for k = 1, 2, then every right-G-monogenic mapping Φ : Ωζ → H(C) can be expressed in the form

Φ(ζ) = F1(ξ1)e1 + F2(ξ2)e2 + F3(ξ1)e3 + F4(ξ2)e4 (24)

where F1, F3 are certain holomorphic functions of the variable ξ1 in the domain D1 and F2, F4 are
certain holomorphic functions of the variable ξ2 in the domain D2.

Similarly, using Theorem 5 and Theorem 9, we obtaint the following statement, which is describes
all left-G-monogenic mappings.

Theorem11. If a domainΩζ ⊂ Em is convex with respect to the set of directionsMk
ζ and fk(Em) = C

for k = 1, 2, then every left-G-monogenic mapping Φ̂ : Ωζ → H(C) can be expressed in the form

Φ̂(ζ) = F̂1(ξ1)e1 + F̂2(ξ2)e2 + F̂3(ξ2)e3 + F̂4(ξ1)e4, (25)

where F̂1, F̂4 are certain holomorphic functions of the variable ξ1 in the domain D1 and F̂2, F̂3 are
certain holomorphic functions of the variable ξ2 in the domain D2.

Obviously, that the formula (24) makes it possible to clearly construct all right-G-monogenic map-
pings and the formula (25) indicates the way to construct any left-G-monogenic mapping by means
of four holomorphic functions of corresponding complex variable.

Now using the decomposition (8) and the multiplication rules (2), we obtain the following integral
representation of the right-G-monogenic mapping

Φ(ζ) =
1

2πi

∫
Γ1

(t− ζ)−1
(
F1(t)e1 + F3(t)e3

)
dt+

+
1

2πi

∫
Γ2

(t− ζ)−1
(
F2(t)e2 + F4(t)e4

)
dt, (26)

and the left-G-monogenic mapping

Φ̂(ζ) =
1

2πi

∫
Γ1

(
F1(t)e1 + F4(t)e4

)
(t− ζ)−1dt+

+
1

2πi

∫
Γ2

(
F2(t)e2 + F3(t)e3

)
(t− ζ)−1dt, (27)

where Γk is a closed Jordan rectifiable curve in Dk, which surrounds point ξk and does not contain
point ξq, k, q = 1, 2, k ̸= q.

Note also that the right Gâteaux derivative expressed by formula

Φ′(ζ) = F ′
1(ξ1)e1 + F ′

2(ξ2)e2 + F ′
3(ξ1)e3 + F ′

4(ξ2)e4 (28)

and the left Gâteaux derivative expressed by formula

Φ̂′(ζ) = F ′
1(ξ1)e1 + F ′

2(ξ2)e2 + F ′
3(ξ2)e3 + F ′

4(ξ1)e4.

The next statement directly follows from the equalities (24) and (25).

International Journal of Advanced Research in Mathematics Vol. 12 11



Theorem12. Suppose that a domain Ωζ ⊂ Em is convex with respect to the set of directionsMk
ζ and

fk(Em) = C for k = 1, 2. Then every G-monogenic mapping Φ : Ωζ → H(C) can be continued to
the G-monogenic mapping in the domain Πζ := {ζ ∈ Em : fk(ζ) ∈ Dk}.

The following statement is a fundamental consequence of equalities (24) and (25), which is true
for an arbitrary domain Ωζ .

Theorem13. Let fk(Em) = C for k = 1, 2, Φ : Ωζ → H(C) is right-G-monogenic mapping and
Φ̂ : Ωζ → H(C) is left-G-monogenic mapping in the domain Ωζ . Then the Gâteaux s-th derivative
Φ(s) is right-G-monogenic and Φ̂(s) is left-G-monogenic mapping in the domain Ωζ for all s.

Proof. Since the ball Θ ⊂ Ω with the center at the point (x0, y0, z0) ∈ Ω is a convex domain with
respect to the set of directionsMk

ζ , in the neighborhoodΘζ := {ζ = xi1+yi2+zi3 : (x, y, z) ∈ Θ} of
the point ζ0 = x0i1+y0i2+z0i3 the equalities (24) and (28) are true. In the same time the components
of the decomposition (28) are holomorphic functions of the corresponding complex variable, it means
that the expression for Φ′(ζ) has the form (24) and Φ′(ζ) is right-G-monogenic mapping.

The statement for the left-G-monogenic mappings is proved completely analogous. The Theorem
is proved.

Using the integral expression (26) of the right-G-monogenic mapping Φ : Ωζ → H(C) in the case
where the domain Ωζ is convex with respect to the set of directions Mk

ζ for k = 1, 2, we obtain the
following expression for the right Gâteaux s-th derivative Φ(s):

Φ(s)(ζ) =
s!

2πi

∫
Γ1

(
(t− ζ)−1

)s+1
(
F1(t)e1 + F3(t)e3

)
dt+

+
s!

2πi

∫
Γ2

(
(t− ζ)−1

)s+1
(
F2(t)e2 + F4(t)e4

)
dt.

In the same way we obtain the left Gâteaux s-th derivative Φ̂(s) of the left-G-monogenic mapping
Φ̂ : Ωζ → H(C):

Φ̂(s)(ζ) =
s!

2πi

∫
Γ1

(
F1(t)e1 + F4(t)e4

)(
(t− ζ)−1

)s+1
dt+

+
s!

2πi

∫
Γ2

(
F2(t)e2 + F3(t)e3

)(
(t− ζ)−1

)s+1
dt.

The Relation between G-Monogenic Mappings and Partial Differential Equations

Consider a linear partial differential equation with constant coefficients:

LnU(x1, x2, . . . , xm) :=
∑

α1+α2+...+αm=n

Cα1,α2,...,αm

∂nU

∂xα1
1 ∂x

α2
2 . . . ∂xαm

m

= 0, (29)

where Cα1,α2,...,αm ∈ R. If the mapping Φ is n-times Gâteaux right-differentiable and the mapping Φ̂
is n-times Gâteaux left-differentiable at every point of Ωζ , then

∂α1+α2+...+αmΦ

∂xα1
1 ∂x

α2
2 . . . ∂xαm

m

= iα1
1 iα2

2 . . . iαm
m Φ(α1+α2+...+αm)(ζ) = iα2

2 . . . iαm
m Φ(n)(ζ)
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and
∂α1+α2+...+αmΦ̂

∂xα1
1 ∂x

α2
2 . . . ∂xαm

m

= Φ̂(α1+α2+...+αm)(ζ) iα1
1 iα2

2 . . . iαm
m = Φ̂(n)(ζ) iα2

2 . . . iαm
m .

Therefore, due to the equality

LnΦ(ζ) =
∑

α1+α2+...+αm=n

Cα1,α2,...,αm i
α2
2 . . . iαm

m Φ(n)(ζ) (30)

every n-times Gâteaux right-differentiable mapping Φ, under the condition Φ(n)(ζ) ̸= 0 and∑
α1+α2+...+αm=n

Cα1,α2,...,αm i
α2
2 . . . iαm

m = 0, (31)

satisfies the equation LnΦ(ζ) = 0. Similarly, by virtue of the equality

LnΦ̂(ζ) = Φ̂(n)(ζ)
∑

α1+α2+...+αm=n

Cα1,α2,...,αm i
α2
2 . . . iαm

m (32)

every n-times Gâteaux left-differentiable mapping Φ̂, under the conditionΦ(n)(ζ) ̸= 0 and the equality
(31), satisfies the equation LnΦ̂(ζ) = 0.
Accordingly, if the condition (31) is satisfied, then the real-valued components ℜUr(x1, x2, . . . , xm)
and ℑUr(x1, x2, . . . , xm) of the decomposition (5) are solutions of the equation (29).

In the case where fk(Em) = C for k = 1, 2, it follows from Theorem 13 that the equalities (30)
and (32) hold for every right-G-monogenic mapping Φ : Ωζ → H(C) and left-G-monogenic mapping
Φ̂ : Ωζ → H(C), respectively.

Thus, to construct solutions of the equation (29) in the form of components of the right- or the left-
G-monogenic mapping, we must find m linearly independent vectors (3) over the field R satisfying
the characteristic equation (31) and verifying the condition fk(Em) = C for k = 1, 2.

In the next theorem we assign a special class of the equations (29) for which fk(Em) = C. Let us
introduce the polynomial

P (δ2, δ3, . . . , δm) :=
∑

α1+α2+...+αm=n

Cα1,α2,...,αm δ
α2
2 . . . δαm

m . (33)

Theorem14. Suppose that there exist linearly independent vectors i1, i2, . . . , im over the field R in
H(C) of the form (3) satisfing the equality (31). If P (δ2, δ3, . . . , δm) ̸= 0 for all real δ2, δ3, . . . , δm,
then fk(Em) = C for k = 1, 2.

Proof. Using the multiplication table of H(C) we obtain the equalities

iα2
2 = aα2

2 e1 + bα2
2 e2, . . . , iαm

m = aαm
m e1 + bαm

m e2.

Now the equality (31) takes the form∑
α1+α2+...+αm=n

Cα1,α2,...,αm (aα2
2 . . . aαm

m e1 + bα2
2 . . . bαm

m e2) = 0. (34)

Moreover, due to the assumption that vectors i1, i2, . . . , im of the form (3) satisfy the equality (31),
there exist complex coefficients au, bu for u = 1, 2, . . . ,m that satisfy the equality (34).

It follows from the equality (34) that∑
α1+α2+...+αm=n

Cα1,α2,...,αma
α2
2 . . . aαm

m = 0, (35)
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∑
α1+α2+...+αm=n

Cα1,α2,...,αmb
α2
2 . . . bαm

m = 0.

Since P (δ2, . . . , δm) ̸= 0 for all δ2, . . . , δm ∈ R, it follows that the equalities (35) can be satisfied
only if at least one of the numbers in the sets (a2, . . . , am) and (b2, . . . , bm) belongs to C \R, which
implies the relation fk(Em) = C for k = 1, 2. The Theorem is proved.

Note that if P (δ2, . . . , δm) ̸= 0 for all δ2, . . . , δm ∈ R, then Cn,0,...,0 ̸= 0, because otherwise
P (δ2, . . . , δm) = 0 for δ2 = . . . = δm = 0.

Since the function P (δ2, . . . , δm) is continuous in Rm−1, the condition P (δ2, . . . , δm) ̸= 0 means
either P (δ2, . . . , δm) > 0 or P (δ2, . . . , δm) < 0 for all real δ2, . . . , δm. Therefore, it is obvious that
for any equation (29) of the elliptic type, the condition P (δ2, . . . , δm) ̸= 0 is always satisfied for all
δ2, . . . , δm ∈ R. At the same time, there exist the equations (29) for which P (δ2, . . . , δm) > 0 for all
δ2, . . . , δm ∈ R, but which are not elliptic. For example, such is the following equation in R4:

∂5U

∂x51
+

∂5U

∂x31∂x
2
2

+
∂5U

∂x1∂x2∂x33
+

∂5U

∂x21∂x
3
4

= 0.

Example 1. We now show the relationship between the G-monogenic mappings and the
three-dimensional Laplace equation

∆3U(x, y, z) :=
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= 0. (36)

The characteristic equation (31) for the equation (36) has the form

1 + i22 + i23 = 0. (37)

A triad of linearly independent vectors i1, i2, i3 over the field R is called harmonic triad, if the
equality (37) is true and the conditions i22 ̸= 0, i23 ̸= 0 are satisfied (see, e. g., [42]).

Substituting the equalities (3) into the conditions (37), we obtain the following statement.

Proposition 15. Harmonic triads in the algebraH(C) are vectors, which are decomposed with respect
to the basis {e1, e2} in the form (3) and complex numbers satisfy the system of the equations

1 + a21 + a22 = 0, 1 + b21 + b22 = 0. (38)

In particular, the system (38) is satisfied by the expressions

a1 = i sin t, a2 = i cos t, b1 = i sin τ, b2 = i cos τ

corresponding to the variables

ξ1 = x+ iy sin t+ iz cos t, ξ2 = x+ iy sin τ + iz cos τ, t, τ ∈ C. (39)

Since for the Laplace equation P (a, b) = 1+a2+b2 > 0, it follows that the conditions of Theorem
14 are satisfied. It means that everyG-monogenic mapping satisfies the equation (36). Mappings (24)
and (25) for which ξ1 and ξ2 are given by the equalities (39), define G-monogenic mappings in H(C)
assosiated with the equation (36). Hence, solutions of the equation (36) are real and imaginary parts
of the function U(x, y, z) = F (x+ iy sin t+ iz cos t), where t ∈ C and F is an arbitrary holomorphic
function.
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The Cauchy Integral Theorem for a Surface Integral

Let Ωζ be a bounded domain in Em. For a continuous mapping φ : Ωζ → H(C) of the form

φ(ζ) =
4∑

q=1

Uq(x1, x2, . . . , xm) eq + i

4∑
q=1

Vq(x1, x2, . . . , xm) eq ,

where (x1, x2, . . . , xm) ∈ Ω and Uq : Ω → R, Vq : Ω → R, we define a volume integral by the
equality ∫

Ωζ

φ(ζ) dx1dx2 . . . dxm :=
4∑

q=1

eq

∫
Ω

Uq(x1, x2, . . . , xm) dx1dx2 . . . dxm+

+i
4∑

q=1

eq

∫
Ω

Vq(x1, x2, . . . , xm) dx1dx2 . . . dxm.

Let Σζ be a piece-smooth surface in Em. For a continuous mappings

φ(ζ) =
4∑

q=1

Uq(x1, x2, . . . , xm) eq + i
4∑

q=1

Vq(x1, x2, . . . , xm) eq , (40)

ψ(ζ) =
4∑

r=1

Pr(x1, x2, . . . , xm) er + i
4∑

r=1

Qr(x1, x2, . . . , xm) er , (41)

where (x1, x2, . . . , xm) ∈ Σ, Uq : Σ → R, Vq : Σ → R and Pr : Σ → R, Qr : Σ → R, we define a

surface integral on Σζ with the differential form σ :=
m∑

u=1

iu
m∧

p=1,p ̸=u

dxp by the equality

∫
Σζ

φ(ζ)σ ψ(ζ) :=
4∑

q=1

m∑
u=1

4∑
r=1

eq iu er

∫
Σ

(
Uq Pr − VqQr

) m∧
p=1,p ̸=u

dxp+

+i
4∑

q=1

m∑
u=1

4∑
r=1

eq iu er

∫
Σ

(
Vq Pr + UqQr

) m∧
p=1,p ̸=u

dxp.

If a domainΩζ ⊂ Em has a closed piece-smooth boundary ∂Ωζ and mappings φ : Ωζ → H(C) and
ψ : Ωζ → H(C) are continuous together with partial derivatives of the first order up to the boundary
∂Ωζ , then the following analogue of the Gauss – Ostrogradsky formula is true:∫

∂Ωζ

φ(ζ)σ ψ(ζ) =

∫
Ωζ

m∑
u=1

(
∂φ

∂xu
iu ψ + φ iu

∂ψ

∂xu

)
dx1dx2 . . . dxm. (42)

Now, the next theorem is a result of the formula (42) and the conditions (6), (7).

Theorem16. Suppose that a domain Ωζ has a closed piece-smooth boundary ∂Ωζ . Suppose also that
Φ : Ωζ → H(C) is right-G-monogenic, Φ̂ : Ωζ → H(C) is left-G-monogenic mapping in the domain
Ωζ and they are continuous together with partial derivatives of the first order up to the boundary ∂Ωζ .
Then ∫

∂Ωζ

Φ̂(ζ)σΦ(ζ) =

∫
Ωζ

m∑
u=1

(
Φ̂(ζ) i2u Φ

′(ζ) + Φ̂′(ζ) i2u Φ(ζ)
)
dx1dx2 . . . dxm. (43)
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The consequence of Theorem 16 is the following statement.

Corollary 17. Under conditions of Theorem 16 with the additional assumption
m∑

u=1

i2u = 0, i. e. map-

pingsΦ and Φ̂ are solutions of them-dimensional Laplace equation, the equality (43) can be rewritten
in the form ∫

∂Ωζ

Φ̂(ζ)σΦ(ζ) = 0.

The Cauchy Integral Theorem for a Curvilinear Integral

Let γζ be a Jordan rectifiable curve in Em. For a continuous mappings φ : γζ → H(C) and ψ : γζ →
H(C) of the forms (40) and (41), respectively,where (x1, x2, . . . , xm) ∈ Σ, Uq : Σ → R, Vq : Σ → R
and Pr : Σ → R, Qr : Σ → R, we define a curvilinear integral along a Jordan rectifiable curve γζ
by the equality: ∫

γζ

φ(ζ) dζ ψ(ζ) :=
4∑

q=1

m∑
u=1

4∑
r=1

eq iu er

∫
Σ

(
Uq Pr − VqQr

)
dxu+

+i
4∑

q=1

m∑
u=1

4∑
r=1

eq iu er

∫
Σ

(
Vq Pr + UqQr

)
dxu.

where dζ :=
m∑

u=1

dxuiu.

Let us also define a surface integral with the differential form dxu∧dxv. LetΣζ be a piece-smooth
surface in Em. For a continuous mapping φ : Σζ → H(C) of the form (40), where (x1, x2, . . . , xm) ∈
Σ and Uq : Σ → R, Vq : Σ → R, we define surface integral onΣζ with the differential form dxu∧dxv
by the equality ∫

Σζ

φ(ζ)dxu ∧ dxv :=
4∑

q=1

eq

∫
Σ

Uq(x1, x2, . . . , xm)dxu ∧ dxv+

+i
4∑

q=1

eq

∫
Σ

Vq(x1, x2, . . . , xm)dxu ∧ dxv.

If mappings φ : Ωζ → H(C) and ψ : Ωζ → H(C) are continuous together with partial derivatives
of the first order in a domain Ωζ and Σζ is an arbitrary piece-smooth surface in Ωζ with a rectifiable
Jordan edge γζ , then the following analogue of the Stokes formula is true:∫

γζ

φ(ζ) dζ ψ(ζ) =

∫
Σζ

(
∂φ

∂x
i2 ψ + φ i2

∂ψ

∂x
− ∂φ

∂y
ψ − φ

∂ψ

∂y

)
dx1 ∧ dx2+

(
∂φ

∂y
i3 ψ + φ i3

∂ψ

∂y
− ∂φ

∂z
i2 ψ − φ i2

∂ψ

∂z

)
dx2 ∧ dx3 + . . .

. . .+

(
∂φ

∂z
ψ + φ

∂ψ

∂z
− ∂φ

∂x
im ψ − φ im

∂ψ

∂x

)
dxm ∧ dx1. (44)
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In the next theorem we show that the right-hand side of the equality (44) equals zero for the right-
G-monogenic mapping Φ : Ωζ → H(C) and the left-G-monogenic mapping Φ̂ : Ωζ → H(C). Note
that the following theorem is a generalization of Theorem 1 of [31].

Theorem18. Suppose that Φ : Ωζ → H(C) is a right-G-monogenic mapping and Φ̂ : Ωζ → H(C) is
a left-G-monogenic mapping in a domainΩζ , and γζ is a rectifiable Jordan edge of some piece-smooth
surface in Ωζ . Then ∫

γζ

Φ̂(ζ) dζ Φ(ζ) = 0. (45)

To generalize an analogue of the Cauchy integral theorem in the case where the curve is rectifiable,
we introduce some auxiliary notions.

Let us consider the algebra H̃(R)with the basis {er, ier}4r=1 over the field of real numbersRwhich
is isomorphic to the algebra H(C) over the field of complex numbers C. In the algebra H̃(R) there
exist another basis {ir}8r=1, where the vectors i1, i2, . . . , im are the same as in the equalities (3).

For the element a :=
8∑

r=1

arir, ar ∈ R, we define the Euclidian norm

∥a∥ :=

√√√√ 8∑
r=1

a2r .

Accordingly, ∥ζ∥ =

√
m∑

u=1

x2u and ∥iu∥ = 1 for all u = 1, 2, . . . ,m.

Using the equivalence of norms in any finite-dimensional space, for the element b :=
4∑

r=1

(b1r +

ib2r)er , b1r, b2r ∈ R, we have the following inequalities:

|b1r + ib2r| ≤

√√√√ 4∑
r=1

(
b21r + b22r

)
≤ c∥b∥, (46)

where c is a positive constant does not dependent on b.

Lemma19. If γζ ⊂ Em is a closed Jordan rectifiable curve and a mapping Ψ : γζ → H(C) is
continuous, then ∥∥∥∥∥

∫
γζ

φ(ζ) dζ ψ(ζ)

∥∥∥∥∥ ≤ c

∫
γζ

∥φ(ζ)∥∥dζ∥∥ψ(ζ)∥, (47)

where c is a positive absolute constant.

Proof. Using the representation of function φ and ψ in the forms (40) and (41) for (x1, x2, . . . , xm) ∈
γ, we obtain ∥∥∥∥∥

∫
γζ

φ(ζ) dζ ψ(ζ)

∥∥∥∥∥ ≤

≤
4∑

q,r=1

∥eqer∥
∫
γ

|Uq + iVq)| · |Pr + iQr| dx1 + . . .
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. . .+
4∑

q,r=1

∥eqimer∥
∫
γ

|Uq + iVq| · |Pr + iQr| dxm.

Now, taking into account the inequality (46) and inequalities ∥eqiuer∥ ≤ cu, u = 1, 2, . . . ,m, where
cu are positive absolute constants, we obtain the relation (47). The Lemma is proved.

The next lemma is proved in such a way as Lemma 4.1 [33] in the case wherem = 3.

Lemma20. Suppose that φ : Ωζ → H(C) and ψ : Ωζ → H(C) are continuous mappings in a simply
connected domain Ωζ , and γζ is a rectifiable curve in Ωζ . Then for an arbitrary ε > 0 there exists a
broken line Λζ ⊂ Ωζ , vertexes of which lie on the curve γζ , such that∥∥∥∥∥

∫
γζ

φ(ζ) dζ ψ(ζ)−
∫
Λζ

φ(ζ) dζ ψ(ζ)

∥∥∥∥∥ < ε. (48)

Now using Lemma 20 we can prove the following analogues of the Cauchy integral theorem for
an arbitrary rectifiable curve in a convex domain.

Theorem21. Suppose that Φ : Ωζ → H(C) is right-G-monogenic and Φ̂ : Ωζ → H(C) is left-G-
monogenic mappings in a convex domain Ωζ . Then for any closed rectifiable Jordan curve γζ ⊂ Ωζ

the equality (45) is true.

Proof.Based on Lemma 20 we inscribe the broken curveΛζ into the curve γζ such that the inequal-
ity (48) hold. Then we divide the broken curve Λζ by the diagonals into triangles. Since the domain
Ωζ is convex, all obtained triangles contain in the domain Ωζ in a whole. By Theorem 18 the integral
along the every triangle equals to zero. Then the integral along the broken curve equals to zero too:∫

Λζ

φ(ζ) dζ ψ(ζ) = 0. (49)

Now the consequence of the equalities (48) and (49) is the equality (45). The Theorem is proved.
In the case where Ωζ is an arbitrary domain, using the proof of Theorem 3.2 [43] and Theorem 4.3

[33], we can prove the following statement.

Theorem22. Let Φ : Ωζ → H(C) be a right-G-monogenic mapping and Φ̂ : Ωζ → H(C) be a left-
G-monogenic mapping in a domain Ωζ . Then for every closed Jordan rectifiable curve γζ homotopic
to a point in Ωζ , the equality (45) is true.

The Morera Theorem

We understand a triangle △ζ as a plane figure bounded by three line segments connecting three its
vertices. Denote by ∂△ζ the boundary of the triangle △ζ in relative topology of its plane. Also we
assume that the triangle△ζ includes the boundary ∂△ζ .

Denote by s[ζ1, ζ2] the segment beginning at the point ζ1 and ending at the point ζ2.

Theorem23. Let fk(Em) = C for k = 1, 2. If a mapping Φ : Ω → H(C) is continuous in a domain
Ωζ and satisfies the equality ∫

∂△ζ

dζΦ(ζ) = 0 (50)

for every triangle△ζ ⊂ Ωζ , such that the closure△ζ ⊂ Ωζ , then the mappingΦ is right-G-monogenic
in the domain Ωζ .
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Proof. Let us fix a certain point a in the domain Ωζ . Consider the mapping

Ψ(ζ) :=

∫
s[a,ζ]

dτ Φ(τ)

and show that it is right-G-monogenic in Ωζ , moreover

Ψ′(ζ) = Φ(ζ). (51)

Let h ∈ E3 and ε > 0 such that a triangle △ζ with the vertices a, ζ , ζ + εh is contained in the
domain Ωζ .

Consider the difference

Ψ(ζ + εh)−Ψ(ζ) =

∫
s[a,ζ+εh]

dτ Φ(τ)−
∫

s[a,ζ]

dτ Φ(τ) =

=

∫
s[a,ζ+εh]

dτ Φ(τ) +

∫
s[ζ,a]

dτ Φ(τ) +

∫
s[ζ+εh,ζ]

dτ Φ(τ)−
∫

s[ζ+εh,ζ]

dτ Φ(τ) =

=

∫
∂△ζ

dτ Φ(τ) +

∫
s[ζ,ζ+εh]

dτ Φ(τ) =

∫
s[ζ,ζ+εh]

dτ Φ(τ). (52)

Now, using the equality (52), Lemma 19 and continuity of the mapping Φ, we obtain

∥∥∥∥∥Ψ(ζ + εh)−Ψ(ζ)

ε
− hΦ(ζ)

∥∥∥∥∥ =

∥∥∥∥∥
∫

s[ζ,ζ+εh]

dτ Φ(τ)

ε
− hΦ(ζ)

∥∥∥∥∥ =

=
1

ε

∥∥∥∥∥
∫

s[ζ,ζ+εh]

dτ
(
Φ(τ)− Φ(ζ)

)∥∥∥∥∥ ≤ c

ε

∫
s[ζ,ζ+εh]

∥Φ(τ)− Φ(ζ)∥∥dτ∥ ≤

≤ c

ε
sup

τ,ζ∈Ωζ , ∥τ−ζ∥≤ε

∥Φ(τ)− Φ(ζ)∥
∫

s[ζ,ζ+εh]

∥dτ∥ ≤

≤ c ∥h∥ sup
τ,ζ∈Ωζ , ∥τ−ζ∥≤ε

∥Φ(τ)− Φ(ζ)∥ → 0, ε→ 0. (53)

From the relation (53) follows the equality

lim
ε→0+0

Ψ(ζ + εh)−Ψ(ζ)

ε
= hΦ(ζ),

the consequence of which is the equality (51).
Inasmuch as in an arbitrary neighborhood of the point ζ of the mappingΦ is the Gâteaux derivative

of the right-G-monogenic mapping Ψ : Ωζ → H(C), then using Theorem 13 the mapping Φ is right-
G-monogenic in the domain Ωζ . The Theorem is proved.

Theorem24. Let fk(Em) = C for k = 1, 2. If a mapping Φ̂ : Ω → H(C) is continuous in a domain
Ωζ and satisfies the equality ∫

∂△ζ

Φ̂(ζ)dζ = 0 (54)

for every triangle △ζ ⊂ Ωζ such that the closure △ζ ⊂ Ωζ , then the mapping Φ̂ is left-G-monogenic
in the domain Ωζ .

International Journal of Advanced Research in Mathematics Vol. 12 19



Cauchy Integral Formula for a Curvilinear Integral

Let ζ ∈ Em. An inverse element ζ−1 is of the following form:

ζ−1 =
1

ξ1
e1 +

1

ξ2
e2 (55)

and it exists if and only if ξk ̸= 0 for k = 1, 2.
Let ζ0 =

m∑
u=1

xu0iu be a fixed point in a domain Ωζ ⊂ Em. In a neighborhood of ζ0 contained in

Ωζ let us take a circle Cζ(ζ0, ε) of the radius ε with the center at the point ζ0. By Ck(ξk0, ε) ⊂ C we
denote the image of Cζ(ζ0, ε) under the mapping fk for k = 1, 2.

We assume that a circle Cζ(ζ0, ε) embraces the set {ζ − ζ0 : ζ ∈ M1
ζ ∪M2

ζ }. It means that the
curve Ck(ξk0, ε) bounds some domain D′

k and ξk0 ∈ D′
k, k = 1, 2.

We say that a curve γζ ⊂ Ωζ embraces once the set {ζ − ζ0 : ζ ∈ M1
ζ ∪M2

ζ }, if there exists the
circle Cζ(ζ0, ε) which embraces the mentioned set and is homotopic to γζ in the domain Ωζ \{ζ− ζ0 :
ζ ∈M1

ζ ∪M2
ζ }.

The following theorem is an analogue of the Cauchy integral formula forG-monogenic mappings.

Theorem25. Suppose that a domain Ωζ ⊂ Em is convex with the respect to the set of directionMk
ζ

and fk(Em) = C for k = 1, 2. Suppose also that Φ : Ωζ → H(C) is right-G-monogenic mapping
and Φ̂ : Ωζ → H(C) is left-G-monogenic mapping in a domain Ωζ . Then for every point ζ0 ∈ Ωζ the
following equality is true:

Φ̂(ζ0) · Φ(ζ0) =
1

2πi

∫
γζ

Φ̂(ζ) (ζ − ζ0)
−1dζ Φ(ζ), (56)

where γζ is an arbitrary closed Jordan rectifiable curve inΩζ such that embraces once the set {ζ−ζ0 :
ζ ∈M1

ζ ∪M2
ζ }.

Proof. Inasmuch as the curve γζ is homotopic to the circle C(ζ0) in the domain Ωζ \ {ζ0 + ζ : ζ ∈
M1

ζ ∪M2
ζ }, then from Theorem 22 follows, that

1

2πi

∫
γζ

Φ̂(ζ) (ζ − ζ0)
−1dζ Φ(ζ) =

1

2πi

∫
C(ζ0)

Φ̂(ζ) (ζ − ζ0)
−1dζ Φ(ζ).

Now, using the representation (55), Lemma 1 of [31] and the Cauchy integral formula for holo-
morphic functions Fn, we obtain the following equalities:

1

2πi

∫
C(ζ0)

Φ̂(ζ) (ζ − ζ0)
−1dζ Φ(ζ) =

= e1

 1

2πi

∫
C1

F̂1(ξ1)F1(ξ1)

ξ1 − ξ10
dξ1 +

1

2πi

∫
C2

F̂3(ξ2)F4(ξ2)

ξ2 − ξ20
dξ2

+

+e2

 1

2πi

∫
C2

F̂2(ξ2)F2(ξ2)

ξ2 − ξ20
dξ2 +

1

2πi

∫
C1

F̂4(ξ1)F3(ξ1)

ξ1 − ξ10
dξ1

+
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+e3

 1

2πi

∫
C1

F̂1(ξ1)F3(ξ1)

ξ1 − ξ10
dξ1 +

1

2πi

∫
C2

F̂3(ξ2)F2(ξ2)

ξ2 − ξ20
dξ2

+

+e4

 1

2πi

∫
C2

F̂2(ξ2)F4(ξ2)

ξ2 − ξ20
dξ2 +

1

2πi

∫
C1

F̂4(ξ1)F1(ξ1)

ξ1 − ξ10
dξ1

 =

= e1

(
F̂1(ξ10)F1(ξ10) + F̂3(ξ20)F4(ξ20)

)
+ e2

(
F̂2(ξ20)F2(ξ20) + F̂4(ξ10)F3(ξ10)

)
+

+e3

(
F̂1(ξ10)F3(ξ10) + F̂3(ξ20)F2(ξ20)

)
+ e4

(
F̂1(ξ10)F1(ξ10) + F̂3(ξ20)F4(ξ20)

)
=

= Φ̂(ζ0) · Φ(ζ),

where ζ0 = ξ10e1 + ξ20e2. The Theorem is proved.

The Taylor Expansion

Considering a problem on an expansion of the G-monogenic mapping in the Taylor power series,
without loss of generality we assume that a domain Ωζ is bounded.

Let ζ0 :=
m∑

u=1

xu0iu be an arbitrary fixed point in a domain Ωζ , ξ10 := x10 +
m∑

u=2

auxu0, ξ20 :=

x10 +
m∑

u=2

buxu0 be points of the complex plane corresponding to the point ζ0 by formulas ξ10 =

f1(ζ0), ξ20 = f2(ζ0), where au, bu are coefficients from the decomposition (3).
Denote by R0 := min

ζ∈∂Ωζ

∥ζ − ζ0∥, where ∂Ωζ is the edge of the domain Ωζ in Em. Consider the

ball Θ(ζ0, R0) := {ζ ∈ Em : ∥ζ − ζ0∥ < R0} in Em with the radius R0 and the center at the point ζ0.
Also denote by D̃k that domain in the complex plane C, onto which the ball Θ(ζ0, R0) is mapped by
the functional fk for k = 1, 2.
Let R := min

{
R0 , min

τk∈∂D̃k

|τk − ξk0|
}
, where ∂D̃k is the edge of the domain D̃k.

By U(ξk0, R) := {ξk ∈ C : |ξk − ξk0| < R} we denote disk in the complex plane with the radius R
and with the center at the point ξk0 for k = 1, 2.

Applying to the G-monogenic mapping a method similar to a method for expanding holomorphic
functions, which is based on an expansion of the Cauchy kernel in a power series (see, e. g., [44, p.
107]), we obtain immediately the following expansion of the right-G-monogenic mapping Φ in the
power series

Φ(ζ) =
∞∑
n=0

(ζ − ζ0)
npn (57)

and of the left-G-monogenic mapping Φ̂ in the power series

Φ̂(ζ) =
∞∑
n=0

p̂n(ζ − ζ0)
n (58)
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in the ball with the center at the fixed point ζ0 ∈ Em and with the radius, which is less than a distance
between ζ0 and the boundary of the domain Ωζ . Here

pn =
Φ(n)(ζ0)

n!
=

1

2πi

∫
γζ

(
(τ − ζ0)

−1
)n+1

dτ Φ(τ);

p̂n =
Φ̂(n)(ζ0)

n!
=

1

2πi

∫
γζ

Φ̂(τ)
(
(τ − ζ0)

−1
)n+1

dτ,

where γζ is an arbitrary closed Jordan rectifiable curve in Ωζ such that embraces once the set {ζ− ζ0 :
ζ ∈ M1

ζ ∪M2
ζ } and lies in a ball, which is contained in the domain Ωζ . This is due to the fact that in

the inequality ∥ab∥ ≤ c ∥a∥∥b∥ the constant c can not be replaced by the unit 1.
Further as in the case form = 3 (see [34]) we show that the representation (24) provides to obtain

an expansion of the right-G-monogenic mapping Φ into the power series (57) and the representation
(25) provides to obtain an expansion of the left-G-monogenic mapping Φ̂ into the power series (58)
in the domain

B(ζ0, R) := {ζ ∈ Em : fk(ζ) ∈ U(ξk0, R)}, k = 1, 2.

Since by the construction the domain B(ζ0, R) is convex with respect to the set of directionsMk
ζ , it

follows that the right-G-monogenic mappingΦ is expressed in the form (24) and the left-G-monogenic
mapping Φ̂ is expressed in the form (25) in the domain B(ζ0, R).

Theorem26. Let fk(Em) = C for k = 1, 2. If a mapping Φ : Ωζ → H(C) is right-G-monogenic in
an arbitrary bounded domain Ωζ ⊂ Em and ζ0 ∈ Ωζ , then the mapping Φ is expressed as the sum of
the convergent power series (57) in the domain B(ζ0, R). In this case

pn = ane1 + bne2 + cne3 + dne4 , (59)

where an , bn , cn , dn are coefficients of the Taylor series

F1(ξ1) =
∞∑
n=0

an(ξ1 − ξ10)
n, F2(ξ2) =

∞∑
n=0

bn(ξ2 − ξ20)
n,

F3(ξ1) =
∞∑
n=0

cn(ξ1 − ξ10)
n, F4(ξ2) =

∞∑
n=0

dn(ξ2 − ξ20)
n,

(60)

where F1, F2, F3, F4 are functions included in the equality (24) for ζ ∈ B(ζ0, R).

Proof. Inasmuch as in the equality (24) the functions F1, F3 are holomorphic in the disk U(ξ10, R)
and the functions F2, F4 are holomorphic in the disk U(ξ20, R), the series (60) are absolutely conver-
gent in the corresponding disks. Then we rewrite the equality (24) in the form

Φ(ζ) =
∞∑
n=0

an(ξ1 − ξ10)
ne1 +

∞∑
n=0

bn(ξ2 − ξ20)
ne2+

+
∞∑
n=0

cn(ξ1 − ξ10)
ne3 +

∞∑
n=0

dn(ξ2 − ξ20)
ne4.

Now, using the relations

(ζ − ζ0)
ne1 = (ξ1 − ξ10)

ne1, (ζ − ζ0)
ne2 = (ξ2 − ξ20)

ne2,

(ζ − ζ0)
ne3 = (ξ1 − ξ10)

ne3, (ζ − ζ0)
ne4 = (ξ2 − ξ20)

ne4
(61)
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for all ζ ∈ Em and n = 0, 1, . . . , we obtain the expression (57), where coefficients are defined by
the equality (59) and the series (57) is absolutely convergent in the domain B(ζ0, R). The Theorem is
proved.

The similar statement is true for left-G-monogenic mappings.

Theorem27. Let fk(Em) = C for k = 1, 2. If a mapping Φ̂ : Ωζ → H(C) is left-G-monogenic in an
arbitrary bounded domain Ωζ ⊂ Em and ζ0 ∈ Ωζ , then the mapping Φ̂ is expressed as the sum of the
convergent power series (58), where

p̂n = âne1 + b̂ne2 + ĉne3 + d̂ne4 (62)

and ân , b̂n , ĉn , d̂n are coefficients of the Taylor series

F̂1(ξ1) =
∞∑
n=0

ân(ξ1 − ξ10)
n, F̂2(ξ2) =

∞∑
n=0

b̂n(ξ2 − ξ20)
n,

F̂3(ξ2) =
∞∑
n=0

ĉn(ξ2 − ξ20)
n, F̂4(ξ1) =

∞∑
n=0

d̂n(ξ1 − ξ10)
n,

(63)

where F̂1, F̂2, F̂3, F̂4 are functions included in the equality (25) for ζ ∈ B(ζ0, R).

The following theorem is an analogue of the uniqueness theorem for the right-G-monogenic map-
pings taking values in the algebra H(C).

Theorem28. Let fk(Em) = C for k = 1, 2. If two right-G-monogenic mappings Φ1 : Ωζ → H(C),
Φ2 : Ωζ → H(C) in an arbitrary domainΩζ ⊂ Em coincide in a neighborhood of an arbitrary interior
point in the domain Ωζ , then they are identically equal everywhere in the domain Ωζ .

Proof. Let in the neighborhood ω(ζ0, R) := {ζ ∈ Em : ∥ζ − ζ0∥ < R} of an arbitrary point
ζ0 ∈ Ωζ the following equality is true:

Φ1(ζ) ≡ Φ2(ζ). (64)

Since the ball ω(ζ0, R) is a convex set, the mappings Φ1,Φ2 can be represented in the form (24):

Φ1(ζ) = F1(ξ1)e1 + F2(ξ2)e2 + F3(ξ1)e3 + F4(ξ2)e4 ,

Φ2(ζ) = H1(ξ1)e1 +H2(ξ2)e2 +H3(ξ1)e3 +H4(ξ2)e4 .

Now the equalities

F1 ≡ H1, F3 ≡ H3 in the domain f1
(
ω(ζ0, R)

)
, (65)

F2 ≡ H2, F4 ≡ H4 in the domain f2
(
ω(ζ0, R)

)
(66)

follow from the equality (64). Using the uniqueness theorem for holomorphic functions of complex
variable (see, e. g., [44, p. 118]), the equalities (65) are true everywhere in the domain f1(Ωζ) and the
equalities (66) are true everywhere in the domain f2(Ωζ). Now using the uniqueness of decomposition
with respect to a basis, we have that the equality (64) holds everywhere in the domainΩζ . The Theorem
is proved.

The same statement is true for the left-G-monogenic mappings taking values in the algebraH(C).
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Theorem29. Let fk(Em) = C for k = 1, 2. If two left-G-monogenic mappings Φ̂1 : Ωζ → H(C),
Φ̂2 : Ωζ → H(C) in an arbitrary domainΩζ ⊂ Em coincide in a neighborhood of an arbitrary interior
point in the domain Ωζ , then they are identically equal everywhere in the domain Ωζ .

Note, that the coincidence of mappings Φ1 : Ωζ → H(C) and Φ2 : Ωζ → H(C) on the set of
the points that contains at least one limit point of the domain Ωζ is not sufficient to identical equality
of these mappings in the whole domain Ωζ . For example, the value of the G-monogenic mappings
Φ1(ζ) = ζ2e1 and Φ2(ζ) = sin ζe3 coincide for all ζ ∈M1

ζ , but does not coincide identically.

The Laurent Expansion

Consider a problem on an expansion of the right-G-monogenic mapping Φ : Kζ → H(C) and the

left-G-monogenic mapping Φ̂ : Kζ → H(C) in the Laurent series about the point ζ0 :=
m∑

u=1

xu0iu in

the unbounded domain

Kζ := {ζ ∈ Em : 0 ≤ r < |ξk − ξk0| < R ≤ ∞}, k = 1, 2.

Theorem30. Let fk(Em) = C for k = 1, 2. Then every right-G-monogenic mappingΦ : Kζ → H(C)
is expressed in the domain Kζ as the sum of the convergent series

Φ(ζ) =
∞∑

n=−∞

(ζ − ζ0)
npn , (67)

where (ζ − ζ0)
n :=

(
(ζ − ζ0)

−1
)−n for n = −1,−2, . . . and coefficients pn are the same as in the

equality (59), in which an, bn, cn, dn are coefficients of the Laurent series

F1(ξ1) =
∞∑

n=−∞

an(ξ1 − ξ10)
n, F2(ξ2) =

∞∑
n=−∞

bn(ξ2 − ξ20)
n,

F3(ξ1) =
∞∑

n=−∞

cn(ξ1 − ξ10)
n, F4(ξ2) =

∞∑
n=−∞

dn(ξ2 − ξ20)
n,

(68)

where F̂1, F̂2, F̂3, F̂4 are functions included in the equality (25) for ζ ∈ Kζ .

Proof. Since in the equality (24) the functions F1, F3 are holomorphic in the ring
{ξ1 ∈ C : r < |ξ1 − ξ10| < R} with the center at the point ξ10 = x1 +

m∑
u=2

auxu and the functions

F2, F4 are holomorphic in the ring {ξ2 ∈ C : r < |ξ2 − ξ20| < R} with the center at the point
ξ20 = x1 +

m∑
u=2

buxu, they are extended into the Laurent series (68), which are absolutely convergent

in the corresponding rings. Then we rewrite the equality (24) in the form

Φ(ζ) =
∞∑

n=−∞

an(ξ1 − ξ10)
ne1 +

∞∑
n=−∞

bn(ξ2 − ξ20)
ne2+

+
∞∑

n=−∞

cn(ξ1 − ξ10)
ne3 +

∞∑
n=−∞

dn(ξ2 − ξ20)
ne4.
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Further, using the equalities (61) for all ζ ∈ Kζ and integer values n, we obtain the expression of
the mapping Φ in the series (67), where coefficients are defined by the equalities (59). Moreover, the
series (67) is absolutely convergent in the domain ζ ∈ Kζ . The Theorem is proved.

In the same way we can prove the following theorem, which is true for the left-G-monogenic
mappings.

Theorem31. Let fk(Em) = C. Then every left-G-monogenic mapping Φ̂ : Kζ → H(C) is expressed
in the domain Kζ as the sum of the convergent series

Φ̂(ζ) =
∞∑

n=−∞

p̂n(ζ − ζ0)
n , (69)

where (ζ − ζ0)
n :=

(
(ζ − ζ0)

−1
)−n for n = −1,−2, . . . and coefficients p̂n are the same as in the

equality (62), in which ân, b̂n, ĉn, d̂n are coefficients of the Laurent series

F̂1(ξ1) =
∞∑

n=−∞

ân(ξ1 − ξ10)
n, F̂2(ξ2) =

∞∑
n=−∞

b̂n(ξ2 − ξ20)
n,

F̂3(ξ2) =
∞∑

n=−∞

ĉn(ξ2 − ξ20)
n, F̂4(ξ1) =

∞∑
n=−∞

d̂n(ξ1 − ξ10)
n,

(70)

where F̂1, F̂2, F̂3, F̂4 are functions included in the equality (25) for ζ ∈ Kζ .

The Classification of Singularities of G-Monogenic Mappings

Terms of the Laurent series (67) and (69) with nonnegative powers form a regular part, and terms
with negative powers form a principal part of the series (67) and (69).

Let us compactify the algebra H(C) by means of addition of the infinite point. Let us agree that
every sequence wn : = τ1,ne1 + τ2,ne2 + τ3,ne3 + τ4,ne4 with τ1,n, τ2,n, τ3,n, τ4,n ∈ C converges to
the infinite point in the case, where at least one of the sequences τ1,n, τ2,n, τ3,n, τ4,n converges to the
infinity in the extended complex plane.

Now suppose that the right-G-monogenic mapping Φ : K0
ζ → H(C) and the left-G-monogenic

mapping Φ̂ : K0
ζ → H(C) identified in the domain

K0
ζ := {ζ ∈ Em : 0 < |ξk − ξk0| < R ≤ ∞} , k = 1, 2.

Denote by K̃0
ζ := {ζ ∈ Em : |ξk − ξk0| < R}.

The following theorem is true.

Theorem32. Let fk(Em) = C for k = 1, 2. If the expansion (67) of a mapping Φ : K0
ζ → H(C):

1) does not contain a principal part, then the mapping Φ has finite limit

lim
ζ → ζ0 + ζ∗,

ζ /∈
{
ζ0 + ζ∗ : ζ∗ ∈ M1

ζ ∪M2
ζ

} Φ(ζ) (71)

2) contains only finite numbers of terms in a principal part, then at least for one value k = 1, 2 the
mapping Φ has infinite limit

lim
ζ → ζ0 + ζ∗k ,

ζ /∈
{
ζ0 + ζ∗k : ζ

∗
k ∈ Mk

ζ

} Φ(ζ) (72)

at all points ζ0 + ζ∗k ∈ K̃0
ζ ∩ {ζ0 + ζ∗k : ζ∗k ∈Mk

ζ };
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3) contains infinite numbers of terms in the principal part, then at least for one value k = 1, 2
the mapping Φ either has an infinite limit, or has not neither finite, nor infinite limit at all points
ζ0 + ζ∗k ∈ K̃0

ζ ∩ {ζ0 + ζ∗k : ζ∗k ∈Mk
ζ }.

Proof. A mapping Φ in the domain K0
ζ is expressed in the form (24), where the functions F1, F3

are holomorphic in the pierced neighborhood U(ξ10, R) \ {ξ10} of the point ξ10, and the functions F2,
F4 are holomorphic in the pierced neighborhood U(ξ20, R) \ {ξ20} of the point ξ20 .

Let us consider the case where the decomposition (67) does not contain the principal part, namely
it is expressed in the form (57). In this case coefficients of the Laurent series (68) are related with coef-
ficients of the series (57) by the equalities (59), then due to the equalities pn = 0 for n = −1,−2, . . . ,
the equalities an = bn = cn = dn = 0 hold for all negative n. Hence, the Laurent series (68) in the
neighborhood of the corresponding points ξ10, ξ20 are the Taylor series of their sums, and the func-
tions F1, F2, F3, F4 from the equality (24) are holomorphic in the corresponding domains U(ξ10, R),
U(ξ20, R). It means that the mapping (24) has the finite limits (71) at all points ζ0+ζ∗ ∈ K̃0

ζ∩
{
ζ0+ζ

∗ :

ζ∗ ∈ L1
ζ ∪ L2

ζ

}
.

Now consider the case where the principal part of the decomposition (67) contains only finite
number of terms. Then from the relations (59), which associate coefficients of the Laurent series (68)
with the coefficients of the series (67), follows, that all principal parts of the series (68) do not contain
infinite number of terms, and the principal part at least one of their does not equal to zero. It means
that the point ξ10 is not an essential singular point for the functions F1, F3 and the point ξ20 is not an
essential singular point for the functions F2, F4, but at least one of the functions F1, F2, F3, F4 has a
pole in a corresponding point. It follows, that at least one of the functions F1, F2, F3, F4 has an infinite
limit as ξ1 → ξ10 or as ξ2 → ξ20, so the limit (72) is also infinite for k = 1 or k = 2.

Finally, consider the case where the principal part of the decomposition (67) contains an infinite
number of nonzero members, so there exists an infinite number of nonzero coefficients pn for negative
n. Then from the relations (59) follows that the principal part of at least one of the series (68) contains
an infinite number of terms and it means, that either the point ξ10 is an essential singular for the
functions F1, F3, or the point ξ20 is an essential singular for at least one of the functions F2 or F4.
Therefore, a mappingΦ can not have a finite limit at all points of the set K̃0

ζ∩{ζ0+ζ∗ : ζ∗ ∈ L1
ζ∪L2

ζ},
but it can have an infinite limit at these points. The Theorem is proved.

For example, if ξ10 is a pole of the function F1 and an essential singular point of the function F3,
the point ξ20 is an essential singular point of the functions F2, F4, then the function F1 has an infinite
limit in the point ξ10. Thus, the limit (72) is an infinite at all points ζ0+ζ∗1 ∈ K̃0

ζ ∩{ζ0+ζ∗1 : ζ∗1 ∈ L1
ζ}.

In the case where, for example, F2 ≡ 0, F3 ≡ 0, F4 ≡ 0 and the point ξ10 is an essential singular
point of the function F1, a mapping Φ has not neither the finite, nor the infinite limit (72) at all points
ζ0 + ζ∗1 ∈ K̃0

ζ ∩ {ζ0 + ζ∗1 : ζ∗1 ∈ L1
ζ}.

Now, for a removable singular point, a pole and a essential singular point of the G-monogenic
mapping Φ in a pierced neighborhood of the point ζ0 ∈ Em, one can give the same definitions as for
appropriate notions in the complex plane (see, e. g., [44, p. 135]). Namely, the point ζ0 is called:

1) a removable singular point of the mapping Φ, if there exists finite limit

lim
ζ → ζ0,

ζ /∈ {ζ0 + ζ∗ : ζ∗ ∈ M1
ζ ∪M2

ζ }

Φ(ζ) = A;

2) a pole of the mapping Φ, if there exists infinite limit

lim
ζ → ζ0,

ζ /∈ {ζ0 + ζ∗ : ζ∗ ∈ M1
ζ ∪M2

ζ }

Φ(ζ) = ∞;
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3) an essential singular point of the mappingΦ, if the mappingΦ has not neither finite, nor infinite
limits as ζ → ζ0 and ζ /∈ {ζ0 + ζ∗ : ζ∗ ∈M1

ζ ∪M2
ζ }.

It follows from Theorem 32, that the isolated singular point of the G-monogenic mapping can be
only removable singular point. In the case where the mapping has unremovable singularity at the point
ζ0, the singular points are all at least one of the set K̃0

ζ ∩ {ζ0 + ζ∗k : ζ∗k ∈Mk
ζ } for k = 1, 2.

H–Monogenic Mappings

F. Hausdorff [45] proposed a definition for an analytic function in an arbitrary associative (commuta-
tive or noncommutative) algebra A over the field of complex numbers C with the unit, which may be
stated as follows.

The hypercomplex function

f(η) =
n∑

k=1

fk(η1, . . . , ηn)ek , (73)

where ek are basis elements of the algebra A, is called H–analytic function of the variable
η :=

n∑
k=1

ηkek, if the components fk of the decomposition (73) are holomorphic functions of the

complex variables η1, . . . , ηn and if the differential

df :=
n∑

k=1

dfk(η1, . . . , ηn)ek =
n∑

j,k=1

∂fk
∂ηj

dηj ek (74)

is a linear homogeneous function of the differential dη :=
n∑

k=1

dηk ek, that is

df =
n2∑
s=1

As dη Bs , (75)

where As і Bs are certain A–valued functions.

The value f ′(η) :=
n2∑
s=1

AsBs is called the Hausdorff derivative of the function f(η).

Now, we realize the Hausdorff approach to quaternion mappings of the variable ζ =
m∑

u=1

xuiu.

A continuous mapping Φ : Ωζ → H(C) of the form (5) is called H–monogenic in a domain
Ωζ ⊂ Em if Φ is differentiable in the sense of Hausdorff at every point ζ ∈ Ωζ , i. e. components of
the mapping have partial derivatives of the first order with respect to the variables x1, x2, . . . , xm, and
a formal differential of the mapping

dΦ :=
4∑

q=1

m∑
u=1

∂Uq

∂xu
dxueq (76)

is a linear homogeneous function of the differential dζ =
m∑

u=1

dxuiu, i. e.

dΦ =
16∑
s=1

As dζ Bs , (77)

where As, Bs are certain H(C) – valued functions.
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Note, if partial derivatives of the first order of functions Uq for r = 1, 2, 3, 4 exist and continuous,
then the formal differential (76) will be total differential of the mapping Φ, i. e. will be a main part of
the increment of this mapping.

The value Φ′
H(ζ) :=

16∑
s=1

AsBs is called the Hausdorff derivative of the mapping Φ at the point ζ .

Moreover, the following theorem is true:

Theorem33. If a mapping Φ : Ωζ → H(C) is H-monogenic in a domain Ωζ , then its derivative Φ′
H

exists, does not depend on choice of the functions As, Bs in the equality (77) and

Φ′
H(ζ) =

∂Φ

∂x1
. (78)

Proof. The consequence of the H-monogeneity of the mapping Φ is the equality
16∑
s=1

AsdζBs =
4∑

q=1

m∑
u=1

∂Uq

∂xu
dxueq . (79)

Let
As = as1e1 + as2e2 + as3e3 + as4e4 ,

Bs = bs1e1 + bs2e2 + bs3e3 + bs4e4
(80)

for s = 1, 2, . . . , 16. Using the equalities

dζ =

(
dx1 +

m∑
u=1

auxu

)
e1 +

(
dx1 +

m∑
u=1

buxu

)
e2

and (80) we obtain:

AsdζBs = (as1e1 + as2e2 + as3e3 + as4e4)

[(
dx1 +

m∑
u=1

auxu

)
e1+

+

(
dx1 +

m∑
u=1

buxu

)
e2

]
(bs1e1 + bs2e2 + bs3e3 + bs4e4) =

=

(
as1bs1

(
dx1 +

m∑
u=1

auxu

)
+ as3bs4

(
dx1 +

m∑
u=1

buxu

))
e1+

+

(
as2bs2

(
dx1 +

m∑
u=1

buxu

)
+ as4bs3

(
dx1 +

m∑
u=1

auxu

))
e2+

+

(
as1bs3

(
dx1 +

m∑
u=1

auxu

)
+ as3bs2

(
dx1 +

m∑
u=1

buxu

))
e3+

+

(
as2bs4

(
dx1 +

m∑
u=1

buxu

)
+ as4bs1

(
dx1 +

m∑
u=1

auxu

))
e4 . (81)

The relations
∂U1

∂x1
=

16∑
s=1

as1bs1 + as3bs4 ,
∂U2

∂x1
=

16∑
s=1

as2bs2 + as4bs3 ,

∂U3

∂x1
=

16∑
s=1

as1bs3 + as3bs2 ,
∂U4

∂x1
=

16∑
s=1

as2bs4 + as4bs1

(82)
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follows from the equalities (79) and (81).
Due to the equality (80), we have

Φ′
H(ζ) :=

16∑
s=1

AsBs =
16∑
s=1

(
(as1bs1 + as3bs4)e1+

+(as2bs2 + as4bs3)e2 + (as1bs3 + as3bs2)e3 + (as2bs4 + as4bs1)e4

)
.

Then, using the relation (82), we obtain

Φ′
H(ζ) =

∂U1

∂x1
e1 +

∂U2

∂x1
e2 +

∂U3

∂x1
e3 +

∂U4

∂x1
e4 =

∂Φ

∂x1
.

The Theorem is proved.

Theorem34. If mappings Φ : Ωζ → H(C) and Ψ : Ωζ → H(C) are H-monogenic in a domain Ωζ ,
then a product Φ ·Ψ is also H-monogenic mapping in Ωζ and

d(Φ ·Ψ) = dΦ ·Ψ+ Φ · dΨ.

Proof. Let

Φ(ζ) =
4∑

q=1

Ur(x, y, z)eq , Ψ(ζ) =
4∑

q=1

Vq(x, y, z)eq .

Then

dΦ =
4∑

q=1

m∑
u=1

∂Uq

∂xu
dxueq , dΨ =

4∑
q=1

m∑
u=1

∂Vq
∂xu

dxueq

and
d(Φ ·Ψ) = d

(
U1V1 + U3V4

)
e1 + d

(
U2V2 + U4V3

)
e2+

+d
(
U1V3 + U3V2

)
e3 + d

(
U2V4 + U4V1

)
e4 =

= e1

m∑
u=1

(
∂U1

∂xu
V1 +

∂V1
∂xu

U1 +
∂U3

∂xu
V4 +

∂V4
∂xu

U3

)
dxu+

+e2

m∑
u=1

(
∂U2

∂xu
V2 +

∂V2
∂xu

U2 +
∂U4

∂xu
V3 +

∂V3
∂xu

U4

)
dxu+

+e3

m∑
u=1

(
∂U1

∂xu
V3 +

∂V3
∂xu

U1 +
∂U3

∂xu
V2 +

∂V2
∂xu

U3

)
dxu+

+e4

m∑
u=1

(
∂U2

∂xu
V4 +

∂V4
∂xu

U2 +
∂U4

∂xu
V1 +

∂V1
∂xu

U4

)
dxu.

Let us transform the obtained expression to the following form:

e1

m∑
u=1

(
∂U1

∂xu
V1 +

∂U3

∂xu
V4

)
dxu + e2

m∑
u=1

(
∂U2

∂xu
V2 +

∂U4

∂xu
V3

)
dxu+

+e3

m∑
u=1

(
∂U1

∂xu
V3 +

∂U3

∂xu
V2

)
dxu + e4

m∑
u=1

(
∂U2

∂xu
V4 +

∂U4

∂xu
V1

)
dxu+
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+e1

m∑
u=1

(
∂V1
∂xu

U1 +
∂V3
∂xu

U4

)
dxu + e2

m∑
u=1

(
∂V2
∂xu

U2 +
∂V4
∂xu

U3

)
dxu+

+e3

m∑
u=1

(
∂V1
∂xu

U3 +
∂V3
∂xu

U2

)
dxu + e4

m∑
u=1

(
∂V2
∂xu

U4 +
∂V4
∂xu

U1

)
dxu,

where we have(
V1dU1 + V4dU3

)
e1 +

(
V2dU2 + V3dU4

)
e2 +

(
V3dU1 + V2dU3

)
e3+

+
(
V4dU2 + V1dU4

)
e4 +

(
U1dV1 + U3dV4

)
e1 +

(
U2dV2 + U4dV3

)
e2+

+
(
U1dV3 + U3dV2

)
e3 +

(
U2dV4 + U4dV1

)
e4 = dΦ ·Ψ+ Φ · dΨ.

The Theorem is proved.
By Theorem 34 the set of H-monogenic mappings taking values in the algebra H(C) forms the

functional algebra, since a product of two H-monogenic mappings is H-monogenic mapping too.
In the next theorem we establish a relation between G-monogenic and H-monogenic mappings.

Theorem35. Every right-G-monogenic mapping Φ : Ωζ → H(C) and every left-G-monogenic map-
ping Φ̂ : Ωζ → H(C) in a domain Ωζ ⊂ Em is H-monogenic mapping in this domain.

Proof. Let Φ : Ωζ → H(C) is a right-G-monogenic mapping. Then the existence of the partial
derivatives of the first order of the components of the mapping Φ follows from the existence of the
Gâteaux derivative (the equality (4)). Let us show that the differential

dΦ =
m∑

u=1

∂Φ

∂xu
dxu (83)

can be represented in the form (77).
For this we note, that due to the equality (83) and the conditions (6) the equality

dΦ =
m∑

u=1

iu
∂Φ

∂x1
dxu = dζ Φ′(ζ)

is true, so the differential (83) is represented in the form (77), where A1 = 1, B1 = Φ′(ζ).
In the similar way we establish, that due to the equality (83) for Φ = Φ̂ and the conditions (7) is

the equality
dΦ̂ = Φ̂′(ζ)dζ,

so the differential of the mapping Φ̂ is represented in the form (77), where A1 = Φ̂′(ζ), B1 = 1. The
Theorem is proved.

H-monogenic mapping Φ, whose differential is represented as

dΦ = dζ Φ′
H(ζ) (84)

is called right-H-monogenic, and H-monogenic mapping Φ̂, whose differential is represented as

dΦ̂ = Φ̂′
H(ζ)dζ (85)

is called left-H-monogenic in a domain Ωζ .
In the same way as Theorem 5.4 [35] we establish necessary and sufficient conditions of G-

monogeneity of mapping.
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Theorem36. Suppose that components Uq : Ω → C of the mapping (5) are R-differentiable in a
domain Ω. A mapping Φ : Ωζ → H(C) is right-G-monogenic if and only if, when it is right-H-
monogenic in the domain Ωζ ⊂ Em.

Proof. The necessity is proved in the proof of Theorem 35. Let us prove the sufficiency. Let a
mapping Φ is right-H-monogenic, so the equality (84) hold. The consequence of the equalities (83)
and (84) is the equality

m∑
u=1

iu
∂Φ

∂x1
dxu = dζΦ′

H(ζ).

Using the equality (78) and the expression dζ =
m∑

u=1

dxuiu we have the equality

m∑
u=1

∂Φ

∂xu
dxu =

m∑
u=1

iu
∂Φ

∂x1
dxu,

from which follows the Cauchy – Riemann condition (6). Then the mapping Φ is right-G-monogenic.
The Theorem is proved.

Similarly we prove the case of Theorem for the left-G-monogenic mapping.

Theorem37. Suppose that components Uq : Ω → C of the mapping (5) are R-differentiable in a
domainΩ. Amapping Φ̂ : Ωζ → H(C) is left-G-monogenic if and only if, when it is left-H-monogenic
in the domain Ωζ ⊂ Em.

Different Equivalent Definitions of G-Monogenic Mappings

Thus, we obtain the following theorem which gives different equivalent definitions of G-monogenic
mappings in a domain Ωζ .

Theorem38. A mapping Φ : Ωζ → H(C)
(
or Φ̂ : Ωζ → H(C)

)
is right-G-monogenic

(
or left-G-

monogenic
)
in a domain Ωζ ⊂ Em if and only if one of the following conditions is satisfied:

(I) components Uq : Ω → C of the expansion (5) are R-differentiable in the domain Ω and condi-
tions (6)

(
or (7)

)
are satisfied in the domain Ωζ;

(II) components Uq : Ω → C of the expansion (5) are R-differentiable in the domain Ω and the
mapping Φ

(
or Φ̂

)
is right-H-monogenic

(
or left-H-monogenic

)
in the domain Ωζ .

If fk(Em) = C for k = 1, 2, then the mappingΦ is right-G-monogenic
(
or Φ̂ is left-G-monogenic

)
if and only if one of the following conditions is satisfied:

(III) for every point ζ0 ∈ Ωζ there exists a neighborhood, in which the mapping Φ
(
or Φ̂

)
is

expressed as the sum of the power series (57)
(
or (58)

)
;

(IV) the mapping Φ
(
or Φ̂

)
is continuous in Ωζ and satisfies the equality (50)

(
or (54)

)
for every

triangle △ζ such that △ζ ⊂ Ωζ .
If fk(Em) = C for k = 1, 2 and in addition the domain Ωζ ⊂ Em is convex with respect to the set

of directions Mk
ζ , then the mapping Φ is right-G-monogenic

(
or Φ̂ is left-G-monogenic

)
if and only

if, when
(V) there exist unique holomorphic in the domainD1 functions F1, F3

(
or F̂1, F̂4

)
of the variable

ξ1 and unique holomorphic in the domainD2 functions F2, F4

(
or F̂2, F̂3

)
of the variable ξ2 such that

the mapping Φ
(
or Φ̂

)
is expressed in the form (24)

(
or (25

)
in the domain Ωζ .
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Proof. It is established in [28] that the mapping Φ is right-G-monogenic in the domain Ωζ if and
only if the condition (I) is satisfied.

The equivalence of the condition (II) and the notion of right-G-monogenic mapping is established
in Theorem 37.

To prove the equivalence of the condition (III) and the notion of right-G-monogenic mapping is a
consequence of Theorem 26 and the property of convergent series (57) to define a mapping right-G-
monogenic in a domain of convergence.

The equivalence of the condition (IV) and the notion of right-G-monogenic mapping follows from
Theorem 23 and Theorem 22.

Finally, the equivalence of the condition (V) and the notion of right-G-monogenic mapping Φ,
it is sufficient to note that the uniqueness of the functions F1, F2, F3, F4 in (25) follows from the
uniqueness of decomposition of element with respect to the basis {e1, e2, e3, e4} of the algebra H(C),
and the mapping (25) is right-G-monogenic in Ωζ because it satisfies the condition (6).

For the left-G-monogenic mappings Theorem is proved in a same way. The Theorem is proved.

Conclusion

We consider a class of so-called quaternionic G-monogenic (differentiable in the sense of Gâteaux)
mappings associated withm-dimensional (m ∈ {2, 3, 4}) partial differential equations and propose a
description of all mappings from this class by using four analytic functions of complex variable. ForG-
monogenic mappings we generalize some analogues of classical integral theorems of the holomorphic
function theory of the complex variable (the surface and the curvilinear Cauchy integral theorems, the
Cauchy integral formula, the Morera theorem), and Taylor’s and Laurent’s expansions. Moreover,
we investigated the relation between G-monogenic and H-monogenic (differentiable in the sense of
Hausdorff) quaternionic mappings.
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