E.A. SEVOST'YANOV, A.A. MARKYSH

On Sokhotski–Casoratti-Weierstrass theorem on metric spaces

Zhytomyr I. Franko State University, Zhytomyr, Ukraine E-mail: esevostyanov2009@gmail.com, tonya@bible.com.ua

Let (X, d, μ) and (X', d', μ') be metric spaces with metrics d and d' and locally finite Borel measures μ and μ' , correspondingly. Let us consider condition \mathbf{A} : for all $\beta : [a, b) \to X'$ and $x \in f^{-1}(\beta(a))$, a mapping $f : D \to X'$ has a maximal f-lifting in D starting at x. We say that a function $h : \overline{X} \times \overline{X} \to \mathbb{R}$ meets the requirement **B** on $\overline{X} := X \cup \infty$, if the following conditions hold: **B** $\cdot h$ is a metric on \overline{X} :

- $\mathbf{B}_1: h \text{ is a metric on } X;$
- \mathbf{B}_2 : (X, h) is a compact metric space;
- $\mathbf{B}_3: h(x,y) \leq d(x,y)$ for every $x, y \in X$.

A mapping $f : G \setminus \{x_0\} \to G'$ is a ring Q-mapping at a point $x_0 \in \partial G$ with respect to (p,q)-moduli, if the inequality $M_p(f(\Gamma(S_1, S_2, A))) \leq \int_{A \cap G} Q(x)\eta^q(d(x, x_0)) d\mu(x)$ holds for each ring $A = A(x_0, r_1, r_2) = \{x \in X : r_1 < d(x, x_0) < r_2\}, \quad 0 < r_1 < r_2 < \infty$ and every measurable function $\eta : (r_1, r_2) \to [0, \infty]$ with $\int_{r_1}^{r_2} \eta(r) dr \ge 1$.

Theorem. Let $2 \leq \alpha, \alpha' < \infty, 1 \leq q \leq \alpha, \alpha' - 1 < p \leq \alpha'$ and let (X, d, μ) be locally compact Ahlfors α -regular metric space. Let (X', d', μ') be Ahlfors α' -regular proper path connected, locally connected metric space where (1; p)-Poincaré inequality holds. Let $G := D \setminus \{\zeta_0\}$ be a domain in X, which is locally path connected at $\zeta_0 \in D$. Assume that $Q \in FMO(\zeta_0)$, and there exists a function h satisfying conditions **B**.

If an open discrete ring Q-mapping $f: D \setminus {\zeta_0} \to X$ at ζ_0 with respect to (p,q)-moduli satisfies the condition **A** and ζ_0 is an essential singularity of f, then $f(V \setminus {\zeta_0})$ is dense in X' for an arbitrary neighborhood V of ζ_0 .