On equicontinuity of generalized quasiisometries on Riemannian manifolds

E. Sevost'yanov, S. Skvortsov

Zhitomir Ivan Franko State University, Zhitomir esevostyanov2009@mail.ru, serezha.skv@yandex.ru

Everywhere further D is a domain on a Riemannian manifold $(\mathbb{M}^n, g), n \geq 2, g$ is a Riemannian metric on \mathbb{M}^n and v is a volume on \mathbb{M}^n , as well. Let (X, μ) be a metric measure space and let $1 \leq p < \infty$. We say that X admits a(1;p)-Poincare inequality if there is a constant $C \geq 1$ such that $\frac{1}{\mu(B)} \int_B |u - u_B| d\mu(x) \leq C \cdot (\operatorname{diam} B) \left(\frac{1}{\mu(B)} \int_B \rho^p d\mu(x)\right)^{1/p}$ for all balls B in X, for all bounded continuous functions u on B, and for all upper gradients ρ of u, $u_B := \frac{1}{\mu(B)} \int_B u d\mu(x)$. Metric measure spaces where the inequalities $\frac{1}{C} R^n \leq \mu(B(x_0, R)) \leq C R^n$ hold for a constant $C \geq 1$, every $x_0 \in X$ and all $R < \operatorname{diam} X$, are called Ahlfors n-regular. We write $\varphi \in FMO(x_0)$, if $\overline{\lim_{\varepsilon \to 0} \frac{1}{v(B(x_0,\varepsilon))}} \int_{B(x_0,\varepsilon)} |\varphi(x) - \varphi_{\varepsilon}| dv(x) < \infty$, $\varphi_{\varepsilon} := \frac{1}{B(x_0,\varepsilon)} \int_{v(B(x_0,\varepsilon))} \varphi(x) dv(x)$.

Theorem. Let $p \in [n-1,n]$ and $\delta > 0$, and let a Riemannian manifold \mathbb{M}^n_* be a connected Ahlfors n-regular space. Assume that \mathbb{M}^n_* supports (1;p)-Poincare inequality. Let $B_R \subset \mathbb{M}^n_*$ be a fixed ball of a radius R, and let $Q: D \to [0,\infty]$ be a measurable function. Denote $\mathfrak{R}_{x_0,Q,B_R,\delta,p}(D)$ a family of all open discrete (p,Q)-mappings $f: D \to B_R$ at $x_0 \in D$, for which there exists a continuum $K_f \subset B_R$ such that $f(x) \notin K_f$ for all $x \in D$ and, besides that, diam $K_f \ge \delta$. Then $\mathfrak{R}_{x_0,Q,B_R,\delta,p}(D)$ is equicontinuous at $x_0 \in D$ whenever $Q \in$ $FMO(x_0)$.