On removable singularities of mappings in uniform spaces

Sevost'yanov E. A.

Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics, Slavyansk esevostyanov2009@gmail.com

Skvortsov S. O., Ilkevych N. S.

Zhytomyr Ivan Franko State University

serezha.skv@gmail.com, ilkevych@list.ru

In what follows, (X, d, μ) and (X', d', μ') are metric spaces with metrics dand d' and locally finite Borel measures μ and μ' , correspondingly; M_p denotes the p-modulus of a family of paths. Let $\overline{X} := X \cup \{\infty\}$, and let $h: \overline{X} \times \overline{X} \to \mathbb{R}$ be a metric. We say that h satisfies the weak sphericalization condition, if (\overline{X}, h) is a compact metric space while h and d generate the same topology on X. A metric space X is called a space admitting a weak sphericalization, if there exists a metric $h: \overline{X} \times \overline{X} \to \mathbb{R}$ satisfying the weak sphericalization condition. Given $p \ge 2$, a space \overline{X} is called p-uniform if, for each r > 0, there is $\delta = \delta(r) > 0$ such that $M_p(\Gamma(F, F^*, \overline{X})) \ge \delta$ whenever F and F^* are continua of \overline{X} with $h(F) \ge r$ and $h(F^*) \ge r$. Given $2 \le \alpha < \infty$ and $1 \le q \le \alpha$, the space $X = (X, d, \mu)$ is called (α, q) -admissible source, if (X, d, μ) be locally compact and locally path connected upper Ahlfors α -regular metric space, moreover, for each point $x_0 \in X$ there is $\gamma > 0$ such that

$$\mu(B(x_0, 2r)) \leqslant \gamma \cdot \log^{\alpha - 2} \frac{1}{r} \cdot \mu(B(x_0, r)) \tag{1}$$

for some $r_0 > 0$ and for all $r \in (0, r_0)$. Similarly, given $p \ge 2$, the space $X' = (X', d', \mu')$ is called *p*-admissible target, if (X', d', μ') admits a weak sphericalization, besides that, $(\overline{X'}, h)$ be locally connected *p*-uniform metric space.

Theorem 1. Fix $2 \leq \alpha < \infty$, $2 \leq p < \infty$ and $1 \leq q \leq \alpha$. Let D be a domain in X, let (X, d, μ) be an (α, q) -admissible source and let (X', d', μ') be an p-admissible target. Suppose that $G := D \setminus \{\zeta_0\}$ is a domain in X, which is locally path connected at $\zeta_0 \in D$, $Q \in FMO(\zeta_0)$ and that balls $B_h(A, r) = \{y \in \overline{X'} : h(y, A) < r\}$ do not degenerate into points for each $A \in \overline{X'}$ and every r > 0. If $f : D \setminus \{\zeta_0\} \to X'$ is an open discrete ring Q-mapping with respect to (p, q)-moduli at ζ_0 , and ζ_0 is an essential singularity of f, then $f(U \setminus \{\zeta_0\})$ is dense in X' for an arbitrary neighborhood U of ζ_0 .

1