On removability of isolated singularities of homeomorphisms with the inverse Poletsky inequality

Sevost'yanov E. A.

Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics, Slavyansk esevostyanov2009@gmail.com

Skvortsov S. O.

Zhytomyr Ivan Franko State University serezha.skv@gmail.com

In what follows, M denotes the *n*-modulus of a family of paths, and the element dm(x) corresponds to a Lebesgue measure in \mathbb{R}^n , $n \ge 2$. For given sets E and F and a given domain D in $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$, we denote by $\Gamma(E, F, D)$ the family of all paths $\gamma : [0, 1] \to \overline{\mathbb{R}^n}$ joining E and F in D, that is, $\gamma(0) \in E$, $\gamma(1) \in F$ and $\gamma(t) \in D$ for all $t \in [0, 1]$. Let $x_0 \in \overline{D}$, $x_0 \neq \infty$,

$$S(x_0, r) = \{ x \in \mathbb{R}^n : |x - x_0| = r \}, S_i = S(x_0, r_i), \quad i = 1, 2,$$
$$A = A(x_0, r_1, r_2) = \{ x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2 \}.$$

Let $Q : \mathbb{R}^n \to \mathbb{R}^n$ be a Lebesgue measurable function satisfying the condition $Q(x) \equiv 0$ for $x \in \mathbb{R}^n \setminus D$. The mapping $f : D \to \overline{\mathbb{R}^n}$ is called a *ring Q-mapping at the point* $x_0 \in \overline{D} \setminus \{\infty\}$, if the condition

$$M(f(\Gamma(S_1, S_2, D))) \leqslant \int_{A \cap D} Q(x) \cdot \eta^n(|x - x_0|) \, dm(x) \tag{1}$$

holds for all $0 < r_1 < r_2 < d_0 := \sup_{x \in D} |x - x_0|$ and all Lebesgue measurable functions $\eta : (r_1, r_2) \to [0, \infty]$ such that $\int_{r_1}^{r_2} \eta(r) dr \ge 1$.

Theorem 1. Let D and D' be domains in $\overline{\mathbb{R}^n}$, $n \ge 2$, and let g be a homeomorphism of a domain D' onto a domain D, the inverse $f = g^{-1}$ of which satisfies the condition (1) at every point $x_0 \in \partial D$. If $Q \in L^1(D)$ and y_0 is an isolated point of the boundary of the domain D', then the mapping g has a continuous extension $\overline{g}: D' \cup \{y_0\} \to \overline{\mathbb{R}^n}$ to y_0 .

1