We consider two of three cases depending on the value of $c: 1$) the case, where $0<c<1$, which is said to be the c-biwave equation of the elliptic type; 2) the case, where $c>1$, which is called the c-biwave equation of the hyperbolic type. If $c=1$ Eq. (1) is the well-known biwave equation. In order to obtain all solutions of Eq. (1) for $1 \neq c>0$ we used the method developed in [1].

Hyperbolic case. Consider an associative commutative algebra as follows

$$
\mathbb{A}_{c}=\{x \mathbf{u}+y \mathbf{f}+z \mathbf{e}+v \mathbf{f} \mid x, y, z, v \in \mathbb{R}\}
$$

where $\{\mathbf{u}, \mathbf{f}, \mathbf{e}, \mathbf{f e}\}$ is a basis of \mathbb{A}_{c} with the identity element \mathbf{u} and with the following Cayley table: $\mathbf{f e}=\mathbf{e f}, \mathbf{f}^{2}=\mathbf{u}, \mathbf{e}^{2}=\mathbf{u}-m \mathbf{f e}, m=\sqrt{2(c-1)}$.

Let \mathbb{B}_{c} be a subspace of \mathbb{A}_{c} of the following form

$$
\mathbb{B}_{c}=\{x \mathbf{u}+y \mathbf{e} \mid x, y \in \mathbb{R}\}
$$

It is easily verified that for $c>1$ algebra \mathbb{A}_{c} has the following idempotents

$$
i_{1}=\frac{k_{1}}{k_{1}+k_{2}} \mathbf{u}-\frac{\mathbf{f} \sqrt{2}}{k_{1}+k_{2}} \mathbf{e}, i_{2}=\frac{k_{2}}{k_{1}+k_{2}} \mathbf{u}+\frac{\mathbf{f} \sqrt{2}}{k_{1}+k_{2}} \mathbf{e}
$$

where $k_{1}=\sqrt{c+1}-\sqrt{c-1}, k_{2}=\sqrt{c+1}+\sqrt{c-1}$.
Passing in \mathbb{B}_{c} from the basis $\{\mathbf{u}, \mathbf{e}\}$ to the basis $\left\{i_{1}, i_{2}\right\}$, we have

$$
\omega=x \mathbf{u}+y \mathbf{e}=\left(x-\mathbf{f} \frac{k_{2}}{\sqrt{2}} y\right) i_{1}+\left(x+\mathbf{f} \frac{k_{1}}{\sqrt{2}} y\right) i_{2}, \forall \omega \in \mathbb{B}_{c}
$$

Definition. A function $g: \mathbb{B}_{c} \rightarrow \mathbb{A}_{c}$ is called differentiable (or monogenic) on \mathbb{B}_{c} if for any $\mathbb{B}_{c} \ni \omega=x \boldsymbol{u}+y \boldsymbol{e}$ there exists a unique element $g^{\prime}(\omega) \in \mathbb{A}_{c}$ such that for any $h \in \mathbb{B}_{c}$

$$
\lim _{\mathbb{R} \exists \varepsilon \rightarrow 0} \frac{g(\omega+\varepsilon h)-g(\omega)}{\varepsilon}=h g^{\prime}(\omega)
$$

where $h g^{\prime}(\omega)$ is the product of h and $g^{\prime}(\omega)$ as elements of \mathbb{A}_{c}.
Lemma. A function $g: \mathbb{B}_{c} \rightarrow \mathbb{A}_{c}$, where $c>1$, is monogenic if and only if it can be represented in the following form

$$
\begin{equation*}
g(\omega)=\alpha\left(\omega_{1}\right) i_{1}+\beta\left(\omega_{2}\right) i_{2} \tag{2}
\end{equation*}
$$

where $\omega_{1}=x-\mathbf{f} \frac{k_{2}}{\sqrt{2}} y, \omega_{2}=x+\mathbf{f} \frac{k_{1}}{\sqrt{2}} y$ and $\alpha\left(\omega_{1}\right), \beta\left(\omega_{2}\right)$ have continuous partial derivatives $\frac{\partial}{\partial x} \alpha\left(\omega_{1}\right), \frac{\partial}{\partial y} \alpha\left(\omega_{1}\right), \frac{\partial}{\partial x} \beta\left(\omega_{2}\right), \frac{\partial}{\partial y} \beta\left(\omega_{2}\right)$ and

$$
\frac{\partial}{\partial y} \alpha\left(\omega_{1}\right)=-\mathbf{f} \frac{k_{2}}{\sqrt{2}} \frac{\partial}{\partial x} \alpha\left(\omega_{1}\right), \frac{\partial}{\partial y} \beta\left(\omega_{2}\right)=\mathbf{f} \frac{k_{1}}{\sqrt{2}} \frac{\partial}{\partial x} \beta\left(\omega_{2}\right) .
$$

Hence, considering variables $x, y_{1}=-\frac{k_{2}}{\sqrt{2}} y$ and $x, y_{2}=\frac{k_{1}}{\sqrt{2}} y$, we have

$$
\begin{equation*}
\frac{\partial}{\partial y_{1}} \alpha\left(\omega_{1}\right)=\mathbf{f} \frac{\partial}{\partial x} \alpha\left(\omega_{1}\right), \frac{\partial}{\partial y_{2}} \beta\left(\omega_{2}\right)=\mathbf{f} \frac{\partial}{\partial x} \beta\left(\omega_{2}\right) \tag{3}
\end{equation*}
$$

Theorem. A function $u(x, y)$ is a solution of $E q$. (1) for $c>1$ if and only if for some $i, j \in\{1,2\}$ it can be represented in the following form

$$
u(x, y)=\alpha_{i}\left(\omega_{1}\right)+\beta_{j}\left(\omega_{2}\right)
$$

where $\alpha_{i}\left(\omega_{1}\right), \beta_{j}\left(\omega_{2}\right)$ are four times continuous differentiable components of $\alpha\left(\omega_{1}\right)$ and $\beta\left(\omega_{2}\right)$ of monogenic function $g(\omega)$ in the decomposition (2), and $\alpha\left(\omega_{1}\right)=$ $\alpha_{1}\left(\omega_{1}\right)+\mathbf{f} \alpha_{2}\left(\omega_{1}\right), \beta\left(\omega_{2}\right)=\beta_{1}\left(\omega_{2}\right)+\mathbf{f} \beta_{2}\left(\omega_{2}\right)$ satisfy Eq. (3).

Much in the same way all solutions of Eq. (1) can be obtained for $0<c<1$ [2].

References:

[1] Pogorui A. A. Solutions for PDEs with constant coefficients and derivability of functions ranged in commutative algebras / A. A. Pogorui, R. M. Rodríguez Dagnino, M. Shapiro // Math. Meth. Appl. Sci. - 2014. - Vol. 37, No. 17.P. 2799-2810.
[2] Pogorui A. An algebraic approach for solving fourth-order partial differential equations / A. Pogorui, T. Kolomiiets, R. M. Rodríguez-Dagnino // Fasc. Matematica. - 2019. - Tom XXVI, Issue No. 1, 155-162.

