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Series expansions for monogenic functions in
Clifford algebras and their application

ANATOLIY A. POGORUI, TAMILA YU. KOLOMIIETS

(Presented by O. Dovgoshey)

Abstract. This paper deals with studying some properties of a mono-
genic function defined on a vector space with values in the Clifford alge-
bra generated by the space. We provide some expansions of a monogenic
function and consider its application to study solutions of second order
partial differential equations.
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1. Introduction

A Clifford algebra is a unital associative algebra, which is the minimal
extension of a finite-dimensional vector space V' with a quadratic form. In
this case the vector space V is called embedded in the Clifford algebra and
its orthogonal basis determines the basis of the algebra. We are interested
in properties of a monogenic function defined on the embedded vector
space with values in Clifford algebra, which is a null solution of the Dirac
operator. A monogenic function is one of the basic concept of Clifford
analysis [1]. We obtained an expansion of a left monogenic function into
series of Fueter type polynomials and since any right monogenic function
can be expanded in a similar manner only left monogenic functions are
considered. We also study application of the properties of monogenic
functions to solving some second-order partial differential equations.

2. Monogenic functions in Clifford algebras

Suppose E4t! is an (d + 1)-dimensional linear space over R with
orthogonal basis e;, i = 0,1,...,d. Suppose E4! is embedded in the
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Clifford algebra Cl, 4, p + ¢ = d + 1 with an identity I = ey and e, e; +
eer, =0,k #1, 1 <kl <d. Inaddition, e =1 for 1 <k < p and
eiz—[for p<k<d.

Denote by D = Zf 0 € 8 - the Dirac operator. It is easily verified

2 _xwp 0? d 9?
that D = i=0 §z2 Zi=p+l 92"

We are interested in studing of the following equation
D*f =0. (2.1)

Definition 2.1. A function f : B4t — Cly q is called left monogenic if
Df =0, and f is called right monogenic if fD = 0.

In the sequel we will consider only left monogenic functions. Any left
monogenic function is a solution of the equation D?f = 0.
For Bl 5 ¢ = Zfzo e;z; let us introduce the following polynomials:

pr (T) = xp — erpxo, 1<k <d.

Polynomials p; might be called Fueter type polynomials since in the
case of the algebra of quaternions H = xg + iz + jxo + kxs polynomials
xr1 — ixo, T2 — jro, v3 — krg were introduced by Fueter in [2] and are
known today as the Fueter polynomials.

An expansion of hyperholomorphic quaternion functions in Fueter
polynomials has been reported in [3] and the similar expansion of hy-
perholomorphic co-quaternion functions was considered in [4]. The rela-
tions between monogenic and hyperholomorphic functions was considered
in [5].

Theorem 2.1. Let f € C*® (E%*Y), n € N, and the function f with its
derivatives

o
8xi18xi2 e 8$Zn

be a left monogenic, then there exists real 6 such that
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d d on
ZZ Z 2)pir (2).--Pin (@) 0x;,0x;, . .. 0x5, f (6n2),
O,

1
Tl
in=1

where 0

n E'M&

Proof. Consider function f (tx) as a function of t € R. Taking into

account that f (x) is left monogenic that is 8%0]” (x) = — Ele eia%if (),
we obtain
—f (tz) Z:UZ = Zn: (z; — e;xq) 0 f (tz). (2.2)
i i=1 O
Putting t = 0, we have
i 2.
Zp ) S (0), (2.3
Now considering that functions
81]”(:1;), i=1,...,n
are left monogenic and Eq. (2.2), we get
d? - d (0
ap! (19 =2 (i = e g (57 @2)
— Z — €;20 Jz; (l’] — ejxo) m’f (t$)
Hence, by putting t =0
82
— ¢ 0). 2.4
dth ;jzl exo e]xo) 8xzax]f( ) ( )
Much in the same way one can show that
dn
—f (t
1 (1)
d d o
=y > - Z i, () piy (@) ... pi,, (2) f(tx). (2.5)
=1 ig=1 i1 3:1:1-13@2 c. aﬂ’jln

Now, consider the Taylor series for f (tx) w.r.t. ¢
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Substituting Egs. (2.3)-(2.5) into Eq. (2.6), we obtain Eq. (2.1).

If
9 f(lpz) —0

d d
1
L5 S DD SYNE N NI E ISR

Tip=lig=1  ip=1

n — 0o,
1) that
f(z) = f(0)
d d
(2.7)

00 d
+Zl<z S i (@i (@) pi, (2)

n!
i1=lio=1  in=1

on
% 89@-189@2 ce 837% f (O)) '

In particular case when

then it follows from Eq. (2.

n=1

on
8xi18xi2 e 6%-” f (0) —an

, in €{1,2,...,n}, n € N, we have

for all i1, o, ...

00 1 d d d
> (Z > v @ (@), <m>an)

— Z l(pil ($) +pi2 ($) + -+ pi, (w))nan

d d n
E E T — X0 E €L Q.
n= 1 k=1 k=1

Thus, in this case

d d n
—GO+Z D=0 e an
n=1 " \k=1 k=1

(2.8)

where ag = f (0).
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3. Studying of hyperbolic and Laplace equations by using
monogenic functions

By using Egs. (2.7) and (2.8) we can construct solutions of Eq. (2.1).
For example, putting in Eq. (2.8) a, = n! for 1 <n < m, m € N and
an = 0 for all n > m we get the following solution of Eq. (2.1)

m d d n m d d n
:B):1+Z<Zxk—x026k> :Z<Zxk—xoz:ek> )
n=1 \k=1 k=1 n=0 \k=1 k=1
2n

Taking into account that (ZZ:1 ek) =(p—¢)"inCl,, , we obtain

a real solution of Eq. (2.1) as follows

u(z1,T2,...,2q)
m d n d n—2
_ z((z ) e (z ) o0}
n=0 \ \k=1 k=1
d n—4
+C’,§<Zxk> (p—q)A‘xé—i-...),
k=1

where we assume that C¥ = 0 for n < k.

We can also construct solutions of Eq. (2.1) in the cases of infinite
non-zero terms of series (2.7). Indeed, by putting in Eq. (2.7) a, =1 for
all n € N, we get the following solution of Eq. (2.8)

d d d d
x) = exp (Z TL — To Z ek> = exp (Z xk> exp (—wo Z ek> )
k=1 k=1 k=1 k=1

2n
Considering that (ZZZI ek) = (p—q)" and the fact that expres-

2n+1
sions (Zk:l ex are not real for all n € N, we obtain the following

real solution of Eq. (2.1)

d
w(x1,T2,...,T4) = exp <Z :Uk> cos (zov/p — q) -

k=1

In the case where p = 0 (or ¢ = 0) that is, the Clifford algebra is Clp 4
(or Clgp) from Eq. (2.1) follows that a monogenic function f satisfies
the d-dimensional Laplace equation

Agf = Za 2f (3.1)
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Consider the case Clp3 with the embedded vector space E3 and its
basis I, e, es, where I is the identity and ere; + e e, = —210g, 1 <
k,l1 < 2. For this case Eq. (3.1) is the Laplace equation

0? 0? 0?
ASf:@f'f‘ainf'f‘@f:O-

Taking into account Eq. (2.8), it is easily seen that

(e1+e)x—y—=z
Tr,Y,z)—=
f(@9,2) 1-(e1t+e)ztytz

is monogenic in E3\ {(e; + e2)x +y + 2z = 1}.
Let us find the real and imaginary parts of f

@y, 2) = (e1t+e)z—y—2z 1+ (egte)r+y+z
l—(e1+e)z+y+z 1+(ert+e)x+y+z

Yyt z—22%— (y+2z)° T

o224 (1—y—2)? 202+ (1—y—2)

5 (61 + 62).

Thus, we have the following solutions of Eq. (3.1)

y+2z—222 — (y+2)*
222 + (1 —y — 2)?

uy (x,y,2) =

and
x

:2x2+(1—y—z)

L) (Q?, Y, Z) 2"

Now consider the case C'l; 3 where the embedded vector space E* has
the basis I, ey, es, es. I is the identity and epe; + e e, = —210g;, 1 <
k1 <3.

For this case Eq. (2.1) is the following form

0? 0? 0? 0?
@f - @f - 87y2f - @f =0. (3:2)

Consider the function

where w = (e1 + es+ e3)t —x —y — 2.
It follows from Eq. (2.7) that for w # 1 function f (w) is monogenic.
The real and imaginary parts of f can be calculated as follows
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(e1+ert+ey)t—ax—y—2z 1+(ei+extes)t+a+y+z

w) =
J(w) l—(er1+ex+es)t+ax+y+z 1l+(er+ert+es)t+a+y+=z
3 —(zty+2)trty+z t(e1+e2 +e3)
(1—z—y—2)>*—3t2 (1—2—y—2)*—3t2

Hence, we obtain two solutions of Eq. (3.2).

32 —(z+y+z2)t+rt+y+z
(1—a—y—2)*— 3¢

Ui (t,fE, Y, Z) =

and

t
(1—z—y—2z)?2—3t2

U2 (t,x,y, Z) =
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