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This paper deals with the basic properties the algebra of Segre quaternions over the field of complex
numbers. We study idempotents, ideals, matrix representation and the Peirce decomposition of this
algebra. We also investigate the structure of zeros of a polynomial in Segre complex quaternions by
reducing it to the system of four polynomial equations in the complex field. In addition, Cauchy—
Riemann type conditions are obtained for the differentiability of a function on the complex Segre
quaternionic algebra.
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Introduction

The algebra of Segre quaternions or bicomplex numbers was introduced and studied by
Italian mathematician C. Segre in 1892 [1]. The advantage of this real four-dimensional
algebra, or two-dimensional algebra over complex numbers, is its commutativity, which
makes it more applicable to a variety of important problems. For example, in contrast
to quaternions, it is not necessary to consider the right and left derivatives of a
function separately or to study polynomials with coefficients on special positions. Basic
properties of bicomplex numbers and their applications were studied in [2].

In the early of 80-th of the 20-th century, it was understood the possible applications
of bicomplex numbers to problems of inertial navigation [3]. A detailed analysis of
the algebraic and geometric properties of bicomplex numbers is presented in [4]. In
papers |6, 7] the authors developed the theory of monogenic functions in the algebra
of Segre quaternions. In [5] a method for solving polynomial equations over bicomplex
numbers was developed. At present time the algebra of bicomplex numbers is still the
subject of interest of mathematicians.

The main object of the study of this paper is the algebra of Segre complex quaternions,
which is a generalization of bicomplex numbers to the algebra of Segre quaternions
over the field of complex numbers, similar to the complex generalization of quaternions,
which is well studied and has a number of applications in mathematical physics [10]. We
study the main algebraic properties of this algebra such as idempotents, ideals, Peirce
decomposition and matrix representation. We also develop a method for solution of
polynomial equations in Segre complex quaternions and study the Cauchy—D’Alamber
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Some algebraic properties of complex Segre quaternoins

type conditions for differential functions in this algebra. This algebra has already arisen
in our research in the study of solutions of partial differential equations and we believe
that it will find its application in study of differential equations of mathematical physics.
1. The basic properties of the algebra of Segre quaternions.
The algebra of Segre quaternions over real numbers is defined as follows

B (R) = {CLO + a1t + agj + agf},

where a; are real numbers and ¢, j, f are imaginary units of the algebra such that
il=j32=—f*=-1,i4=ji=Ff, if =fi=—j, jif = fj = —i. From these conditions
it follows that algebra B (R) is commutative. In addition, algebra B (R) has exactly

two nontrivial idempotents f, = % and f_ = %, which satisfies the following

properties f, +f_=1land f . f_ =0.
Algebra B (R) can be decomposed in the direct sum of principal ideals I ( f +) and
1 (f 7), which are generated by f, and f_ respectively (the Peirce decomposition)

B(R)=1(f.)@l(f ).

Elements of the ideals are zero-divisors of the algebra B (R). The algebra of Segre
quaternions B (R) has the exact regular representation by 4 x 4 matrices over the field
of real numbers as follows

To I1 x2 €3
r1T —To T3 —I2

84: 7x07x17x2ax3€R )
T2 I3 —Tp —1

r3 —r2 —T1  Tg
that is, we have the following isomorphism of B (R) onto B4

o X1 Z2 z3
ry —To X3 —X2
T2 X3 —Xp —I1
r3 —T2 —T1 X

B(R) >z =u1x9+x1%+ x2J +x3f < € B,.

2. The algebra of Segre quaternions over complex numbers.
Let us consider the algebra of bicomplex numbers with complex coefficients, that
is, the four-dimensional Segre algebra over the field of complex numbers

B(C) ={co+ c17 + 2k + csf},

where ¢, ¢1, co, c3 are complex numbers and j, k, f are imaginary units of the algebra
which are defined by their properties j2 = k2 = —f? = —1,jk = kj = f, jf = fj = —k,
kf = fk = —3. In addition, 7, k, f commute with the complex imaginary unit ¢z € C.
It is easily verified that B (C) is a commutative algebra, which is said to be Segre
quaternions over complex numbers.

159



A. Pogorui, T. Kolomiiets

Similarly to the case of bicomplex numbers, the algebra B (C) is conveniently
considered as the algebra Bg (R) over real numbers, that is

Bg (R) = {ap + a1% + azj + azk + asf + asp + asq + arr},

where a;, l = 0,1,...7 are real numbers and products of the imaginary units are defined
by the following Cayley table

Il v | gk |f]p]|a
1\\1]1 441k flpl|laqgq]|Tr
te -1 p g | r|g|-k]|-f
J\i | |1 f|-k|-t] T |-q
kEl\k| q | f|-1]-]|r]|-i]-p
Frf kg |1 |-q|-p]|
pllp g |-t |r|-qg|1|-f|Fk
qllg|-k|r|-t|-p|-f]|1
ri{yr|-f|l-q|-p| i | k| j|-1

ProPosITION 1. The Bg (R) is 8-dimensional commutative algebra over R.

Proof. The commutativity of the multiplication follows directly from the Cayley
table for imaginary units. Associativity and distributivity are verified by direct cal-
culations. [

Idempotents of algebra Bg (R). Let us consider the following elements of Bg (R)

. 1-f+p+q . 1+f-p+gq
Zl*f7 7'2*#7 (1)
. _1+f+p—q . 1-f-p—gq
3= =7 "

Lemma 1. The elements 11, 12, 13, 4 satisfy the following conditions

1.
B =4, = iy, B3 = 13, 13 = is. (2)
That is, 11, 12, 13, 44 are idempotents of Bg (R).
2. Fork #1
hoh=1%-4=0 k1=12234. (3)

2+t 13+ 1 = 1. (4)
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Proof.

1. By using the Cayley table, we obtain

-2_(1—f+p+q>2_
b=\——7F ) =

1
E(1+f2+p?+q2—2f+2p+2q—2fp—2fq+2pq):

1
16

I-f+p+q .

(4—4f +4p +4q) = 1 1.

Much in the same way we can consider the rest of cases of Egs. (2).

2.
. 1-f+p+qg 1+f-p+gq
1112 = : =
4 4
1
15 WHf—pra—f-f+fp—fa+p+pf-p°+pa+a+af —ap+a’)=
1 .
1—6(1+f—p+q—f—1—q+p+p—q—l—f+q—p+f+1):12-21:0.
Similarly we can prove the rest of Egs. (3).
3.

11+ 22+ 23+ 94 =

l-f+p+q 1+f-p+q 1+f+p—q 1-f—p—
f4p 9. f4p q. f4p q f4p q_

1.

Principal ideals of algebra Bg (R). Consider an element © = z¢ + x1% + x2j +

x3k + x4f + x5p + v6q + x77 Of algebra Bg (R). Let us recall that a linear subspace

I(x)={yx:yeBsg(R)} =Bs(R)z C Bsg(R)

is called the principal ideal of algebra Bg (R) generated by .

Denote by I(i1), I(22), I(%3), I(4) the principal ideals of algebra Bg (R) generating

by respective idempotents (1) as follows

I(zk) = BB (R) 1’/€ = {yzka Yy e ]B8 (R>} s k= 11 2a 37 4.
ProrosiTiON 2. If € I(4;), y € I(4,,), where [ # m, then

-y =0.
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Proof. Since x € I(i;),y € I(iy,) there exist g, y, € Bs (R) such that ¢ = xgi;, y =
Yoim. Taking into account that algebra Bg (R) is commutative and Lemma 1, we have
TY = ToYolitm = 0. O

Theorem 1. Algebra

Bs (R)

can be written as the following direct sum (The Peirce decomposition)

Bs (R) = I(41) & I(%2) & I(43) & I (44).

Proof. Since as linear subspaces of space Bg (R) ideals I(¢1), I(22), I(23), I(i4) are
orthogonal and I(%;) N I(¢;) = 0,k # [ considering Eq. (4) we conclude the proof of
the theorem. [J

Taking into account properties of idempotents it is easily seen that elements of
ideals are zero-divisors of Bg (R).

Theorem 2. I(4) = Cq,1=1,2,3,4.
Proof. Let y € I(41). Then there exist y;, € R,i =0,1,...7 such that

y=(yo+ 1t +y2J +ysk+vyaf +ysp+vyeq +yrr)i =

1 . .
—(yo + 11t + yoi + ysk + vaf +ysp + yeq + yr7) —

4
(of +y17 — Y2k —y3J +ya — ysq — yep + yri) +

(Yop — y1J — Y2t + Y3 —yaq +ys — yef + yrk) +

(Yoq — y1k + yor — y3t — yap — ysf + Y6 + y7j) =

e B N BN

. 1 ..
(yo—y4+y5+y6)11+Z(y1—y2—ys—y7)(i—3—k—r):

((yo —ya+ys +ye) + (y1 — y2 — y3 — y7)8)t1 = ciy,

where ¢ = yo —ya + ys + y6 + (Y1 — y2 — y3 — yr)¢ is complex. O

Similarly we can prove the cases [ = 2,3, 4.

Theorem 1 makes it possible to reduce polynomial equations in Bg (R) to systems
of polynomial equations in the field of complex numbers as follows.

Let us consider a polynomial p,, (w) = aypw™ +am_1w™ 4. . +ag, where w, ai, €
Bs (R), k =0,1,...,m. Our purpose is to study zeros of

pm(w) = 0. (5)
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In accordance with Theorem 1, we consider the following decomposition

() 4

Ay = Ay .+a£4),r:0,1,...m,

W= Wi+ ...+ wy,

where a,(np),wp € I(4p). It should be noted that w;w; = 0 and ag)aﬁj) =0 for i # j.

Substituting (6) into (5), we obtain the following system of polynomial equations

a%)wl + afn) W+ a(()l) 0,

aS?wQ”%—a()lwg” 1—|—...—|—a(()2):0,

7
a(?’)w3 +a7(n) Jws' 1—{—...-|—a(()3) =0, @)

a,(ﬁ)wzl +a7(n) qwit +...+a(()4) =0.

(s) _ .(9) (s)

Considering Theorem 2, we have a,’ = ¢, 15, Wi = 2515, Where ¢, 25 € C.
Thus, taking is; out of the s-th equation s = 1,2, 3,4 of the system, we obtain the
system of four equations in C as follows

cg)z{” + c(l)_ B c(()l) =0,
() +c(2) m=l g ..—1—082):0,
09)23 + 0(3) T+ 083) =0, (®)
+

4) m (4 -1

em 20 ey 2 ..+c(()4):().

Hence, we proved the following theorem

Theorem 3. Let {Tl ,7"2[), ey 7‘,(7[1)} be the set of complex zeros of cm 2] —|—c(l) 2 1y

ot =0,1=1,234

Then the set S = S1 @ So & S3 & Sy, where S = {rgk)zk,rék)zk, ...,r,g’i)ik}, k=
1,2,3,4 is the set of solutions of Eq. (5).

It is easily verified that Eq. (5) has m* zeros.
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Ty

Y

.,T7 be 8 x 8 matrices as follows

100 00O0O0O
01 00O0O0O0OQO
001 000O0O0O0
0001 00O0O0OQO0

000 01O0O0O0

3. The isomorphic matrix algebra.

Let T(), Tl, ..

To

0

0
-1 0

0
-1 0 0

0
0

-1 0 0 O
-1

0
-1 0 0
0 0
-1 0 0
0 0 O
0 0 -1
0
-1
0
0
0
0
0

0

0 00
0 00
0 00
0 00
0 01
010

0
0
0
0
0
0
-1 0 0 0

0
0

7

0
0

0
0 0 -1
-1
0 -1 0 0

-1 0 0
0
-1 0 0
0

0 0

0
0

0
0
-1
0

0
0 0

000 0O0O0O01
0

000 0O0T1TO0TPO0
000 0O0O0T1PO0

It is easily verified that

Ty =
Ty =
164
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To | Th T | T3 | Ty | T5 | T | Tx
To||To | Ty | T | T3 | Ty | 15 | Ts | T7
| Ty | -To | T5 | Ts | T7 | =To | =13 | =T}
T | Ta | 15 | “To | Ty | T3 | =Tv | T7 | —Tg
T3 |15 | T | Ty | —To | -T2 | T7 | -T1 | —T5
Ty || Ty | T7 | T35 | -T2 | To | T | 15 | T1
Ts |15 | =12 | =Ty | Tr | =Ts | To | Ty | T3
T || T6 | =15 | 17 | Ty | —T5 | =Ty | To | T
T |17 | =Ty | T | T | Th | T3 | To | —Tp

The result of multiplication is the same as for basis elements (identity and imaginary
units) of algebra Bg (R).

Let us introduce 8-dimensional matrix algebra over R
7
Bs = Z .I‘jTj, T € R
Jj=0

Theorem 4. Algebra By is the exact reqular representation of Bg (R).
Proof. Define the mapping 7(+) of Bg (R) onto Bg by the formula

T(iB) = xodo + 2111 4+ 22T + 23153 + 4Ty + 2515 + 615 + x71% (9)

for ® = oy + 21t + 227 + x3k + z4f + x5 + 69 + T7T.
Let us show that the mapping 7(-) defines an isomorphism of algebras Bg (R) and
Bs. For z,y € Bg (R) we have

T(x +y) = (o +y0)To + (z1 +y1)T1 + (x2 + y2)To + (3 + y3)T3 + (x4 + ya) T4+

(x5 +y5)T5 + (x6 + y6)T6 + (7 + y7)Tr =

7 7
S T+ Yyl =1(x) +7(y).
j=0 j=0

7 7
(@) (y)= | Do T |- | Dowili | =
j=0 j=0

(Toyo — T1y1 — T2y2 — T3Y3 + TaYs + T5Ys + Teye — 7y7)To+

(oY1 + 1Yo — T2Y5 — T3Y6 + TaYr — T5Y2 — Teys + v7ya) 1+

(Toy2 — T1Y5 + TaYo — T3Y4 — TaY3 — TsY1 + Teyr + 7ye) To+
(Vs + (L )Tu+ (T + ()T + ()T = (z - y).

It is easily seen that matrices T}, j = 0,1,...,7 are linear independent. This implies
that 7(z) = 0 if = 0 and the kernel of homomorphism 7(-) is trivial, that is 7(-) is
the isomorphism. [J
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Denote by A (z) = det (7(x)) . It is easily seen that x is a zero divisor if and only
if det (7(z)) = 0.

4. Differentiation in Bg (R). Cauchy—D’Alamber conditions.
Let f : Bg (R) — Bg (R) is as follows

f(@) = uo(@) + wi(@)i +ua(2)j + us(2)k + us(z)f + us(@)p + us(@)q +ur(z)r,
where up(z) = uy (zo,21,...,27) are some real functions of eight variables x;,j =
0,1,...,7.

DerFINITION 1. The function f(z) is called differential at = € Bg (R) if there exists

the limit b

lim
A(R)#£0,|h|—0

and f’(z) does not depend on h.

DEFINITION 2. A function f : Bg (R) — Bg (R) is called differential if it is differential
at every point z € Bg (R).

Note that the differentiability of a function under consideration differs from the
concept of a monogenic function, which is studied in [6-9].

Theorem 5. A function

f(@) = uo(@) + w1 (@) i+ uz(@)j + us(@)k + ua(@)f + us(2)p + us (@) g + ur ()7
is differential if and only if functions ug(x) have continuous partial derivatives aqé’“ix(jm)
forall 5,k =0,1,...,7 and the following Cauchy-D’Alamber type conditions hold

8UO 6U1 61@ 8U3 _ 8U4 GU5 . 6u6 . a’LW'

drg  Oxy  Oxy Ows Ory Oxs Oxg  Oxp’

8U1 3UQ 8U5 8u6 8’U,7 61,1/2 8U3 8U4
0o Om  Ozy  Oxs  Oua  Ors  Oug  Oxr
8U2 8U5 8U0 8U4 aU3 8u1 aU7 811,6
9o Om1  Omy 0wy 0w Oz;  Ong  Owr
Gug Guﬁ aU4 8’&0 (9UQ 6U7 0u1 8’&5
drg  Om  Ozy 0wy Oz Or5  Oug  Oxr
Ouy Our  Ouz  Oup  Oug  Oug Ous  Ouyp

Gwo ~ Owi 0wy Oms 0w 0w 0w Our

Ou _ Ou_ On_0u_ w_dw_ du_ou o
Oxo 0xy Oxy  Ox3 Oxy  Oxs Oxg Ox7’
8u6 8U3 8U7 8u1 87,15 8U4 8u0 8u2
dvg 0wy Ows  Owy Oy Ovs  Omg  Owp
Oouy Ouy  Oug  Ous  Oup  Ouz  Oux  Oug

drg  Owy  Owy  Org  Oxg  Ors  Owg  Onr
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Proof. Let a function f be differentiable in the above sense.
Denote by eg = 1,e; = 1,...,e; = r. To obtain Conditions (10) we consider the
following limits

limf( +tel aule -
t—0 8951 € l

(11)

Since the right-hand side of Eq. (11) does not depend on the index [ we have

7
8u@ ou; ou;
‘ Z_Z eZ 1 :”'2281767;67 . (12)
=0 =0
Taking into account that efl =i l= —i,...,e;l =fl=F,. ,e;l =rl =
—7 it follows from Egs. (12) conditions (10).
On the contrary, let the functions u;, ¢ = 0,1,...,7 have continuous firsts partial

derivatives and satisfy Cauchy-D’Alamber type conditions (10). Then for every j =
0,1,...,7, we have

7
Uj(i13+h)—Uj($) = 8g‘£_w)hl+0(’h‘), (13)
i=0 ¢

where 2D _y 0 a5 |h| — 0.

k]
Let us put ¢, = 8%’“7(076) Considering Cauchy-D’Alamber type conditions (10) it

follows from Eq. (13) that

§=0 i=0
Thus,
7
. flx+h)—f(x) Ouj(x
l pu—
A(h);ﬁ%ﬂm% h ];0 8:c0 Z €=
O
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A.O. Iloropyii, T.FO. Kosomiennb
Hesiki asire6paiyHi BJacTUBOCTI KOMIJIeKCHUX KBarepHioHiB Cerpe.

Aurebpa xBarepuionis Cerpe un 6ikomiiekcaux ances1 Cerpe Oysia BBeeHa Ta BIEPIIE BUBYAJIACD
iranificekum maremarukoM K. Cerpe B 1892 pori. ITepesara 1iel 9orupuBuMipHOl aJiredpu Ha MO-
JieM gificaux guces, abo aeosuMipHoi anrebpu Kiridbdopa Ha  KOMIUIEKCHUME IUCTIAMU, TTOJISITaE
Y KOMYTATHUBHOCTI MHO>KEHHs 11 €JIEMEHTIB, IO CHpHUE 11 3aCTOCYBAHHIO JI0 JOC/LJPKEHHS Pi3HO-
MaHITHUX BarkKJIMBUX IpobJieM MaTeMaTuku, dizuku, HaBiraiil Tomo. Hampukiiaa, Ha BiaMiny Bif
KBaTePHIOHIB, He MOTPIGHO PO3IVIsS AT OKPEMO IIpaBi Ta JiBi moxijgHi GyHKIH] Y1 OKPEMO BUBYATH
oJIiiHOMU 3 KoedillieHTaMu Ha, CHeIiaJbHUX MiCIIsSX.

OcHoBHEM 006’€KTOM JOCIIPKEHHsI 11i€l poboTu € anrebpa KomiieKcHuX kBarepHioHiB Cerpe, 1o €
y3araJbHEHHAM OIKOMILIEKCHUX 4YHCcesl 0 airedbpu kBarepHionis Cerpe Haj mMojeM KOMILIEKCHUX
qrcesT 33 aHAJIOTIEI0 y3araJbHEHHsT KBATEPHIOHIB 0 KOMILIEKCHUX KBATEPHIOHIB, sike J0Ope BUB-
qeHe 1 Ma€ psJi 3aCTOCYBaHb y MaTeMaTHIHIN (pisuii. ¥ cTaTTi pO3IJIsTHYTO OCHOBHI ajrebpaidHi
Ta aHAJITHYHI BJIacTUBOCTI anrebpu ksBarepuionis Cerpe mas mosiem kommyekcaux uucesn B (C).
Ilokasyerbcs, mo 15 aarebpa mMae 300parkKeHHsST y BUIVISI BOCBMUBUMIPHOI KOMYTATHBHOI aarebpu
Bs (R) mazg mostem aiiicaux umces. Jdns anrebpu Bg (R) cknagesa Tabuaums MHOXKEHHsI 6a3MCHUX
eneMenTiB (Tabsuis Keni). Suaiieni izemMmnorenTn agrebpu Ta HaBeIEHI IX OCHOBHI BJIACTHUBOCTI.
3a JI0IIOMOroI0 roJIOBHUX ij1eaiiB, moOyI0BaHUX HA 1JIEMIIOTEHTAX, PO3MJIAHYyTO po3kiaz Ilipca Ta
BU3HAYEHO JIJIbHUKU HYJIS aJIreOpH sIK eJIEMEeHTH iseasiis.

Jlocnmi;KeHo CTPYKTYPY HYJ/IiB MHOTOUJIEHa B KOMILJIEKCHUX KBaTepHioHax Cerpe MuIsixOM 3BeIeHHS
HOro /10 CHCTEMHU YOTUPHOX MOJIHOMIAJTBPHAX PIBHSHB HAJ MOJIEM KOMILIEKCHUX duces. s mporo
JIOBEJIEHO T€OpeMY IIPO 300pasKeHHs I'OJIOBHUX i/1easiiB y BUIVISL JOOYTKY JOBIJIBHOIO KOMILIEKC-
HOT'O YMCJIa Ha BiAMOBiMHUH igemmoTeHT anarebpu. ¥ CTaTTi HABOAUTHCS 130MOp(dHE MATPUUYHE ITO-
nanus Bs anre6pu Bg (R). s nporo KoxkeH 6a3uCHUN €JIeMeHT anarebpu 3alMcanuii BiAmosi oo
BOCBMUBHUMIpPHOIO MaTpuIeio ta tabumisa Keal MHOXKEHHS X eJIEMEHTIB.
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Takoxx 000Ti JOCTIIKYIOTHCST YMOBU Ju(pepeHIiiioBaHoCTi HKIIT Ha anareopi Bs (R), a came, or-
b b
pumani ymoBu tuny Komri—Pimana, siki € qocraTHiMu Jiy1s1 TOro, 006 OyHKIA Ha aJredpi KOMIIJIEKCHAX

kBaTepHioHiB Cerpe Oyna audepeHIitoBaAHO0.

Karouwoei caosa: xeameprionu, aszebpa Ceepe, poskaad Ilipca, noainomu.
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