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1. Introduction

The notion of a measure is one of the most fundamental objects in mathe-
matics and it would be superfluous to talk much about this. We present now
a few lines only in order to explain what we are going to do in the paper, for
more details the reader is referred, for instance, to the book of Halmos [10],
but for many other sources as well.

Let X be a non-empty set and let M be a σ-algebra of subsets of X.
A measure (sometimes called a positive measure) is a function μ defined on
the measurable space (X,M) whose range is in [0,∞] =: R+ and which is
countably additive, i.e., if {Ai} is a disjoint countable family of elements of
M then

μ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

μ (Ai) . (1.1)

This definition includes tacitly that the series on the right-hand side converges
to a non-negative number or to ∞.
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We assume that there exists at least one A ∈ M for which μ(A) < ∞.
This excludes the trivial situation of the measure identically equal to ∞.

Some important properties are:
(a) μ(∅) = 0.
(b) Any measure is finite additive, i.e., (1.1) holds for a finite number of

pair-wise disjoint elements of M.
(c) Any measure is monotone: if A, B are in M and A ⊂ B then μ(A) ≤

μ(B).
(d) If {An}n∈N

⊂ M, A =
⋃∞

n=1 An, A1 ⊂ A2 ⊂ . . . ⊂ An . . ., then
μ(An) −→ μ(A) as n −→ ∞.

(e) If {An}n∈N
⊂ M, A1 ⊃ A2 ⊃ . . . ⊃ An . . ., A =

⋂∞
n=1 An, μ(A1) < ∞,

then μ(An) −→ μ(A) as n −→ ∞.

Definition 1.1. A measure on a measurable space (X,M) is called σ-finite if
there exists a collection of sets {An, n ∈ N} ⊂ M such that ∪∞

n=1An = X and
for each n ≥ 1 it holds that μ (An) < ∞.

Let us recall a notion of a signed measure or charge:

Definition 1.2. A signed measure (or a charge) on a measurable space (X,M)
is a function

λ : M → R ∪ {−∞,∞} (1.2)

such that λ (∅) = 0 and λ is countably additive.

The origin of the notion of the measure explains why it takes just non-
negative values. At the same time the question arises: can the measure be
complex-valued?

A complex measure ω is a complex-valued countably additive function
defined on M. A good source of basic information may be Chapter 6 of the
book Rudin [15].

In accordance with the definition if ω is identically zero then ω is a
positive measure. A positive measure is allowed to have +∞ as its value;
but it is proved that a complex measure μ has as its values the complex
numbers only: any μ(E) is in C. The real measures are defined as σ-additive
real-valued functions and they form a subclass of the complex measures.
Complex measures are not monotone in general but they verify the other
above properties. It is worth noting that for a given σ-algebra the collections
of positive and of complex measures have, in general, a non-empty intersection
but the former is not necessarily a subcollection of the latter; the same kind
of relation exists between the positive and the real measures.

The definition of a complex measure can be rephrased as follows. Con-
sider a countable family {Ei} of elements of M which are pairwise disjoint
and let E :=

⋃∞
i=1 Ei; the family {Ei} is called a partition of E. Then a

complex measure ω is a complex function on M such that

ω(E) =
∞∑

i=1

ω(Ei) (1.3)

for any E ∈ M and for every partition {Ei} of E.
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Notice that the requirement of being {Ei} in (1.3) any partition of
E has a strong implication: one can change the order of the enumeration
in {Ei}, thus every rearrangement of the series is convergent to the same
complex number; it is known that hence the series in (1.3) converges in fact
absolutely.

The main goal and inspiration of this work come from some ideas in
the book of W. Rudin [15] which includes measures with values in complex
numbers. Rudin shows that such objects are interesting by themselves but
they also have interesting relations and are useful for a better understanding
of classical positive and real measures. Thus is not surprising that this work
extends Rudin’s idea and the quaternions instead of the complex numbers
have become the candidates to deal with. In this paper it is not pretended
to achieve for the highest generality but in contrast it has been chosen an
object with rather similar algebraic structure expecting to obtain the results
both similar and more sophisticated. This is the motivation. What is more,
since the quaternions possess a wide scale of applications both in mathemat-
ics and in other areas, there are high possibilities that the results presented
here will find their applications. For example, it is known that the usual 3-
dimensional vector fields when being embedded into quaternion-valued func-
tions show very nice and new properties which can be hardly seen directly
without quaternions.

Quaternionic measures might have applications in probability theory,
for example, as an alternative representation of the distribution of a four-
component random vector. This representation has the advantage of being
an element of the field. Another application is correlation theory, see [17].

We have found very few sources about the general theory of quaternionic
measures. In the paper Agrawal and Kulkarni [1] and in the book Colombo,
Gantner [6, Section 6.1] one can find some basic information on this subject
and in both it is noted, that the corresponding properties are analogous to
their complex antecedents. Besides, in both cases the authors are interested,
mainly, in the questions for which such properties are just auxiliary. For
this reason in these papers the proofs have not been provided. We believe
that the proofs are not so trivial and a systematic presentation of them is
instructive and useful. There are many fine points and it is worth to give
such a presentation with the proofs. Lemma 2.3 is a good illustration of the
peculiarities which emerge in the quaternionic situation and which generalize
its complex antecedents in a non-trivial way.

Notice that recently a number of papers have been published where a
new kind of measures has been introduced, namely, those which take values
in the ring of hyperbolic numbers, see, e.g., Ghosh, Biswas and Yasin [9],
Kumar and Sharma [12], Alpay, Luna and Shapiro [2]. It turns out that
their properties are rather close to their classical real-valued analogues. Of
course the hyperbolic theory is totally different to that of quaternionic-valued
measures, since it is well known that quaternions do not have zero-divisors.
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There exists a long list of works where the notion of a measure extends
in a lot of different directions. Some of them are: Ludkowski [13], Diestel
and Faires [8], Sun and Yeneng [16], Benci, Horsten and Wenmackers [4],
Cutland [7], Ciurea [5], Hofweber and Schindler [11], Artstein [3], Maitland
Wright [14].

The paper is divided in five sections of which the first one is Introduc-
tion. Section 2 deals with the total variation of a quaternionic measure. In
analogy with the complex measures case, in the present situation the total
variation keeps being a positive measure. Theorem 2.4 about the finiteness of
the total variation of a quaternionic measure is central here, it uses strongly
Lemma 2.3 and the peculiarities of the quaternionic situation manifest them-
selves heavily here. Section 3 describes the properties of the absolute continu-
ity of quaternionic measures. In Sect. 4 the set of quaternionic measures as a
quaternionic linear space is discussed. The brief Sect. 5 treats some properties
of the derivatives of quaternionic measures.

2. Quaternionic Measure and Its Total Variation

We assume in the sequel that X is a non-empty set.

Definition 2.1. Let M be a σ-algebra of subsets of a set X. A quaternionic
measure ω on a measurable space (X,M) is a quaternion-valued function
on M such that for any collection of sets {An, n ∈ N} ⊂ M with the property
that An ∩ Am = ∅ whenever n �= m we have:

ω

( ∞⋃
n=1

An

)
=

∞∑
n=1

ω (An). (2.1)

Since the union of sets An is not changed if the subscripts are permuted,
every rearrangement of series (2.1) must converge to ω (

⋃∞
n=1 An). For this

reason, we assume that the series converges absolutely.
Let us ask the question: Is it possible to find a positive measure μ on a

measurable space (X,M) such that |ω (A)| ≤ μ (A) for any A ∈ M? That is,
we ask to find a positive measure μ that dominates the Euclidean modulus
of ω. It is easily seen that if there exists such a dominant measure then for
any partition {An, n ∈ N} ⊂ M of A ∈ M, we have:

∞∑
n=1

|ω (An)| ≤
∞∑

n=1

μ (An) = μ

( ∞⋃
n=1

An

)
.

Let us define the set function var [ω] (·) on M as follows:

var [ω] (A) := sup
∞∑

n=1

|ω (An)| ,

where the supremum is taken over all partitions of A. It is clear that

|ω (A)| ≤ var [ω] (A) ≤ μ (A) .

We will call the function var [ω] the total variation of the quaternionic mea-
sure ω.
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Theorem 2.2. The total variation var [ω] of a quaternionic measure ω on a
measurable space (X,M) is a positive measure on (X,M).

Proof. Suppose {An, n ∈ N} ⊂ M is a partition of A. Let {Anm} be a parti-
tion of An, n ∈ N. Hence, we have:

∞∑
n=1

∞∑
m=1

|ω (Anm)| ≤ var [ω] (A) .

Then, taking into account that An =
⋃∞

m=1 Anm, we have:
∞∑

n=1

sup
∞∑

m=1

|ω (Anm)| ≤ var [ω] (A) .

Hence,
∞∑

n=1

var [ω] (An) ≤ var [ω] (A) . (2.2)

Let us show that
∞∑

n=1

var [ω] (An) ≥ var [ω] (A) .

Suppose {Bm} is a partition of A. Then for a fixed m ∈ N, the collection
{Bm ∩ An}n∈N

is a partition of Bm and for a fixed n ∈ N, the collection
{Bm ∩ An}m∈N

is a partition of An. Thus, we have:
∞∑

m=1

|ω (Bm)| =
∞∑

m=1

∣∣∣∣∣
∞∑

n=1

ω (Bm ∩ An)

∣∣∣∣∣ ≤
∞∑

m=1

∞∑
n=1

|ω (Bm ∩ An)|

=
∞∑

n=1

∞∑
m=1

|ω (Bm ∩ An)| ≤
∞∑

n=1

var [ω] (An) . (2.3)

Since Eq. (2.3) holds for every partition {Bm} of A, it holds that

var [ω] (A) ≤
∞∑

n=1

var [ω] (An) .

Therefore, together with (2.2) one obtains:

var [ω] (A) =
∞∑

n=1

var [ω] (An).

It is easily seen that

var [ω] (∅) = 0.

�

Now it is necessary to prove a Lemma that is crucial in the proof of
Theorem 2.4. This Lemma has its complex antecedent (see Lemma 6.3 in
[15]) and the proof that we present here is inspired by the proof given by
Rudin. Of course the situation for the quaternions is much more complicated.
In order that our proof will be more clear to the reader, let us analyse first
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Figure 1. The complex plane is divided in four regions

the proof given for the complex case. Hence, the Lemma and its proof given
by Rudin say:

If z1, . . . , zn are complex numbers, there is a subset S of
{1, . . . , n} such that

∣∣∣∣∣∣
∑
j∈S

zj

∣∣∣∣∣∣ ≥ 1
6

n∑
j=1

|zj |. (2.4)

It is worth noting that, in the third edition of its book, Rudin proved
the above inequality with the coefficient 1

π and the ideas of the proof are
completely different. For this paper it is convenient to take the ideas of the
second edition of the book because they are more conveniently extended to
the quaternionic case. Let us start reproducing the proof given by Rudin of
the above Lemma explaining in a more detailed way each step. The author
starts the proof writing w = |z1| + · · · + |zn|. Then the complex plane is
divided in the four closed quadrants bounded by the lines y = ±x: P1, P2,
P3, P4. See Fig. 1.

Denote by Sj the set of subindexes � ∈ {1, 2, . . . , n} such that z� ∈ Pj ,
j ∈ {1, 2, 3, 4} and write Aj =

∑
�∈Sj

|z�|. Set M := max{A1, A2, A3, A4}.
After this, it is claimed that there is no loss of generality to assume that
M = A1. Let us see why this is true.

(I) If M = A1 it follows that

4A1 ≥ w i.e., A1 ≥ w

4
. (2.5)
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Note that for any z ∈ P1, z = |z|eiθ, with −π
4 ≤ θ ≤ π

4 , hence
1√
2

≤ cos θ ≤ 1√
2
. Besides, |z| ≥ 
e(z) = |z| cos θ ≥ |z|√

2
, which implies

that ∣∣∣∣∣
∑
�∈S1

z�

∣∣∣∣∣ ≥
∑
�∈S1


e(z�) ≥ 1√
2

∑
�∈S1

|z�| ≥ w

4
√

2
.

Since 4
√

2 < 6 we conclude that∣∣∣∣∣
∑
�∈S1

z�

∣∣∣∣∣ ≥ w

6
.

(II) If M = A2 then, as before, one has that 4A2 ≥ w. Given z ∈ P2,
z = |z|eiθ with π

4 ≤ θ ≤ 3
4 , hence 1√

2
≤ sin θ ≤ 1. Thus, �m(z) =

|z| sin θ ≥ |z|√
2
, hence∣∣∣∣∣

∑
�∈S2

z�

∣∣∣∣∣ ≥
∑
�∈S2

�m(z�) ≥ 1√
2

∑
�∈S2

|z�| ≥ w

4
√

2
.

(III) Assume that M = A3. Note that if the equality (2.4) is true for the
given z1, . . . , zn, then it is also true for −z1, . . . ,−zn. Since P3 = −P1,
this case is reduced to Case (I).

(IV) Similarly to the previous item, if M = A4, we can reduce this situation
to Case (II).

The above proof says that for an analogous result in H, we need to
subdivide the whole space in such a way that we can control the values of
the angles and the symmetries between the parts.

Recall which are the angles associated to quaternions. Given q ∈ H,
q = q0 + −→q , with q0 ∈ R, −→q ∈ R

3. Assume that q is not a real number, i.e.,−→q �= 0, then

q = |q|
(

q0

|q| +
−→q
|q|

)
= |q|

(
q0

|q| +
−→q
|−→q |

|−→q |
|q|

)
,

i.e.,

q = |q|
(

q0

|q| + û
|−→q |
|q|

)
,

with a vector û in R
3 of modulus 1. It happens also that

q2
0

|q|2 +
|−→q |2
|q|2 = 1,

thus q can be expressed as

q = |q| (cos α + û sin α) . (2.6)
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A geometric interpretation of α is that it is the angle that the quaternion
q ∈ H ∼=R R

4 makes with the positive real axis. Thus we conclude that
α ∈ [−π

2 , π
2

]
.

Since the vector û belongs to R
3, let us write it in spherical coordinates:

û = (sin η cos θ, sin η sin θ, cos η), with θ ∈ [−π, π], η ∈ [0, π]. Thus (2.6)
written as an element in R

4 becomes:

q = |q| (cos α, sin α sin η cos θ, sin α sin η sin θ, sin α cos η) . (2.7)

Now we make a partition of the whole R
4 ∼=R H into the following sets

(it is clear that in the quaternionic case the description of the partition is not
as simple and “natural” as in the complex case):

P1 :=
{

q | α ∈
[π

4
,
π

2

]
, η ∈

[
0,

π

4

]}
;

P2 :=
{

q | α ∈
[π

4
,
π

2

]
, η ∈

[
π

4
,
3π

4

]
, θ ∈

[
−π

4
,
π

4

]}
;

P3 :=
{

q | α ∈
[π

4
,
π

2

]
, η ∈

[
π

4
,
3π

4

]
, θ ∈

[
π

4
,
3π

4

]}
;

P4 :=
{

q | α ∈
[π

4
,
π

2

]
, η ∈

[
π

4
,
3π

4

]
, θ ∈

[
−π,−3π

4

]
∪

[
3π

4
, π

]}
;

P5 :=
{

q | α ∈
[π

4
,
π

2

]
, η ∈

[
π

4
,
3π

4

]
, θ ∈

[
−3π

4
,−π

4

]}
;

P6 :=
{

q | α ∈
[π

4
,
π

2

]
, η ∈

[
3π

4
, π

]}
;

P7 :=
{

q | α ∈
[
−π

4
,
π

4

]}
;

P8 :=
{

q | α ∈
[
−π

2
,−π

4

]
, η ∈

[
0,

π

4

]}
;

P9 :=
{

q | α ∈
[
−π

2
,−π

4

]
, η ∈

[
π

4
,
3π

4

]
, θ ∈

[
−π

4
,
π

4

]}
;

P10 :=
{

q | α ∈
[
−π

2
,−π

4

]
, η ∈

[
π

4
,
3π

4

]
, θ ∈

[
π

4
,
3π

4

]}
;

P11 :=
{

q | α ∈
[
−π

2
,−π

4

]
, η ∈

[
π

4
,
3π

4

]
, θ ∈

[
−π,−3π

4

]
∪

[
3π

4
, π

]}
;

P12 :=
{

q | α ∈
[
−π

2
,−π

4

]
, η ∈

[
π

4
,
3π

4

]
, θ ∈

[
−3π

4
,−π

4

]}
;

P13 :=
{

q | α ∈
[
−π

2
,−π

4

]
, η ∈

[
3π

4
, π

]}
.

Lemma 2.3. Given the quaternions q1, q2, . . . , qn, there is a subset S of
{1, 2, . . . , n} such that ∣∣∣∣∣

∑
�∈S

q�

∣∣∣∣∣ ≥ 1
39

n∑
�=1

|q�|. (2.8)
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Proof. Write w =
∑n

�=1 |q�|, and consider the partition of H ∼=R R
4 given

before. Let Sj be the set of subindexes � ∈ {1, . . . , n} such that q� ∈ Pj ,

and define Aj :=
∣∣∣∑�∈Sj

q�

∣∣∣. Take M := max{A1, . . . , A13}, and assume that
M = A�0 , � ∈ {1, . . . , 13}. We claim that the set S we are looking for in
formula (2.8) is precisely S�0 . Indeed, first note that

13M ≥ w, i.e., M ≥ w

13
. (2.9)

Now consider the following cases.
Case 1 M = A1. Given q ∈ P1 then sin α ≥ 1√

2
and cos η ≥ 1√

2
. Consider-

ing the z components of these quaternions one gets:∣∣∣∣∣
∑
�∈S1

q�

∣∣∣∣∣ ≥
(∑

�∈S1

q�

)
z

=
∑
�∈S1

(q�)z =
∑
�∈S1

|q�| sin α� cos η�

≥ 1
2

∑
�∈S1

|q�| =
1
2
A1 =

1
2
M ≥

≥ w

2 · 13
≥ w

39
=

1
39

n∑
�=1

|q�|.

Case 2 M = A2. For any q ∈ P2 one has sin α ≥ 1√
2
, sin η ≥ 1√

2
, cos θ ≥

1√
2
. Now consider the x component of these quaternions:∣∣∣∣∣

∑
�∈S2

q�

∣∣∣∣∣ ≥
(∑

�∈S2

q�

)
x

=
∑
�∈S2

(q�)x =
∑
�∈S2

|q�| sin α� sin η� cos θ�

≥
∑
�∈S2

|q�| 1
2
√

2
≥ w

2
√

2 · 13
≥ 1

39

n∑
�=1

|q�|.

Case 3 This case is managed similarly as Cases 1 and 2 but using the
components Qy.

Case 4 If q ∈ P4, then sinα ≥ 1√
2
, sin η ≥ 1√

2
, cos θ ∈

[
−1,− 1√

2

]
. Let us

consider the R-linear map T : R4 −→ R
4 given by

T (q) = |q| (cos α, sin α sin η cos(θ + π), sin α sin η sin(θ + π), sin α cos η) .

This map is a reflexion in R
4 with respect to the hyperplane gen-

erated by (1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). Hence |T (q)| = |q|. In
particular the Lemma will be true for q1, . . . , qn if and only if it
is true for T (q1), . . . , T (qn). Thus, assuming that M = A4, after
applying T the situation is reduced to Case 2.

All the other cases follow a similar scheme, and in all the cases it is obtained
that, if M = A�, then take S = S� and the equality (2.8) follows. �

Theorem 2.4. If ω is a quaternionic measure on a measurable space (X,M),
then

var [ω] (X) < ∞.



   63 Page 10 of 17 M. E. Luna-Elizarrarás et al. Adv. Appl. Clifford Algebras

Proof. Suppose that there is a set A ∈ M such that var [ω] (A) = ∞. Put
t = 39 (1 + |ω (A)|). From the definition of var [ω] (A), there is a partition
{Ai} of A such that

n∑
i=1

|ω (Ai)| > t

for some n. Let us apply Lemma with qi = ω (Ai) to conclude that there is a
set E ⊂ A which is a union of some sets Ai and

|ω (E)| >
1
39

t > 1.

Considering F = A \ E, it follows that

|ω (F )| = |ω (A) − ω (E)| ≥ |ω (E)| − |ω (A)| >
1
39

t − |ω (A)| = 1.

Thus, we have split A into disjoint sets E and F such that |ω (E)| > 1 and
|ω (F )| > 1.

Now, if var [ω] (X) = ∞ then we can split X into sets E1 and F1 with
|ω (E1)| > 1 and var [ω] (F1) = ∞. Then we split F1 into E2 and F2 with
|ω (E2)| > 1 and var [ω] (F2) = ∞. Continuing in this way, we obtain a
countably infinite disjoint collection {En} with |ω (En)| > 1 for all n. The
countable additivity of ω implies that

ω

( ∞⋃
n=1

En

)
=

∞∑
n=1

ω (En).

But this series cannot converge since ω (En ) does not tend to 0 as n → ∞.
This contradiction shows that var [ω] (X) < ∞. �

Remark 2.5. The general term measure includes +∞ as an admissible value.
Thus the real measures do not form a subclass of the quaternionic measures.

3. Absolute Continuity of Quaternionic Measures

Let μ be a positive measure on a measurable space (X,M) and ω be a quater-
nionic measure on (X,M).

Definition 3.1. We say that ω is absolutely continuous with respect to μ if
μ (A) = 0 implies ω (A) = 0 for A ∈ M. We write ω � μ.

Definition 3.2. Given a quaternionic measure ω on a measurable space (X,M),
assume that there is a set F ∈ M such that ω(A) = ω (A ∩ F ) for every
A ∈ M, we say that ω is concentrated on F . This is equivalent to say that
ω(A) = 0 whenever A ∩ F = ∅.

Let ω1, ω2 be quaternionic measures on (X,M) and suppose there exists
a pair of disjoint sets F , G such that ω1 is concentrated on F and ω2 is
concentrated on G. Then we say that ω1 and ω2 are mutually singular, and
write ω1⊥ω2.
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Theorem 3.3. (Properties of mutually singular quaternionic measures) Sup-
pose ω, ω1, ω2 are quaternionic measures and μ is a positive measure, then:

1. If ω is concentrated on F , so is var [ω].
2. If ω1⊥ω2 then var [ω1] ⊥var [ω2] .
3. If ω1⊥μ and ω2⊥μ, then (ω1 + ω2)⊥μ.
4. If ω1 � μ and ω2 � μ, then (ω1 + ω2) � μ.
5. If ω � μ, then var [ω] � μ.
6. If ω1 � μ and ω2⊥μ, then ω1⊥ω2.
7. If ω � μ and ω⊥μ then ω = 0 identically.

Proof. 1. If A ∩ F = ∅ then for any partition {An, n ∈ N} of A we have
ω (An) = 0 for every n ∈ N and hence var [ω] (A) = 0 for any A.

2. This follows from 1.
3. There is a set B ∈ M on which μ is concentrated. There are F , G ∈ M

such that ω1 is concentrated on F and ω2 is concentrated on G. If
A ⊂ (F ∪ G)c = F c ∩ Gc then (ω1 + ω2)(A) = ω1(A) + ω2(A) = 0.
This means that ω1 + ω2 is concentrated on F ∪ G, but it is clear that
B ⊂ (F ∪ G)c, hence (ω1 + ω2)⊥μ.

4. Follows directly from the definitions.
5. Suppose μ (A) = 0 and {An, n ∈ N} is a partition of A. Then μ (An) = 0

and since ω � μ then ω (An) = 0 for every n ∈ N; hence
∑∞

n=1 |ω (An)| =
0. This implies that var [ω] (A) = 0.

6. Since ω2⊥μ there is a set E ∈ M such that μ (E) = 0 and ω2 is concen-
trated on E. Since ω1 � μ, then ω1 (A) = 0 for every A ∈ M such that
A ⊂ E and hence ω1 is concentrated on Ec.

7. It follows from 6. that ω⊥ω. Hence ω = 0.
�

Theorem 3.4. (Lebesgue) Decomposition of a quaternionic measure. Let λ
be a signed real σ-finite measure on a measurable space (X,M) and let ω
be a quaternionic measure on (X,M). Then there exists a unique pair of
quaternionic measures ωa and ωs such that

ω = ωa + ωs, ωa � λ, ωs⊥λ. (3.1)

The pair ωa, ωs is called the Lebesgue decomposition of the quaternionic mea-
sure ω w.r.t. λ, where ωa is the absolutely continuous part and ωs is the
singular part of the decomposition.

Proof. Since ω is a quaternionic finite measure on (X,M), we have ω = λ0 +
iλ1+jλ2+kλ3, with λk, k = 0, 1, 2, 3 real finite signed measures. By applying
Lebesgue’s decomposition theorem to each λk, we obtain λk = λ

(k)
a + λ

(k)
s ,

where λ
(k)
a � λ and λ

(k)
s ⊥λ. By putting ωa = λ

(0)
a + iλ(1)

a + jλ(2)
a +kλ

(3)
a and

ωs = λ
(0)
s + iλ(1)

s + jλ(2)
s +kλ

(3)
s we conclude the proof of the existence of the

pair ωa, ωs. Suppose that there is another pair ω′
a, ω′

s, which satisfies (3.1),
then

ω′
a − ωa = ωs − ω′

s.

It is easily seen that ω′
a − ωa � λ and ωs − ω′

s⊥λ. Hence, considering item 7
of Theorem 3.3, we have ω′

a − ωa = ωs − ω′
s = 0. �
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Theorem 3.5. (Radon–Nikodym theorem for quaternionic measures) Let μ
be a positive σ-finite measure on a measurable space (X,M), let ω be a
quaternionic measure on (X,M) and let ωa be absolutely continuous part of
the Lebesgue decomposition of ω w.r.t. μ. Then there is a measurable quater-
nionic function h on X such that for every set A ∈ M

ωa (A) =
∫

A

hdμ,

where h is uniquely defined up to a μ-null set.

Remark 3.6. Recall that a quaternionic function is measurable if the preim-
age of any borelian set belongs to M.

Proof. Since ωa � μ, taking into account that ωa (·) := λ
(0)
a (·) + iλ(1)

a (·) +
jλ(2)

a (·)+kλ
(3)
a (·), where λ

(k)
a are signed measures, we have that λ

(k)
a � μ for

each k = 0, 1, 2, 3. Taking into account Radon–Nikodym Theorem for signed
measures there exist measurable functions hk such that

λ(k)
a (A) =

∫
A

hkdμ, ∀A ∈ M, k = 0, 1, 2, 3.

Hence

ωa (A) =
∫

A

(h0 (x) + ih1 (x) + jh2 (x) + kh3 (x)) dμ (x) .

�

Remark 3.7. The quaternionic function h (x) := h0 (x) + ih1 (x) + jh2 (x) +
kh3 (x) will be called the Radon–Nikodym derivative of the quaternionic mea-
sure ωa w.r.t. μ and it is denoted by dωa/dμ.

In the quaternionic case the Radon–Nikodym theorem has also many
corollaries and we give one of them.

Theorem 3.8. Let ω be a quaternionic measure on a measurable space (X,M).
Then there exists a measurable function h such that |h (x)| = 1 for all x ∈ X
and

dω

dvar [ω]
= h.

Proof. Since ω � var [ω] it follows from Theorem 3.5 that there is a measur-
able function h such that dω/dvar [ω] = h.
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For a positive real p let us consider Sp := {x ∈ X : |h (x)| < p}. Then
for any partition {An} of Sp we have:∑∞

n=1 |ω (An)| =
∑∞

n=1

∣∣∣∫An
h (x)dvar [ω] (x)

∣∣∣
≤ p

∑∞
n=1 var [ω] (An) = pvar [ω] (Sp) .

Hence var [ω] (Sp) ≤ pvar [ω] (Sp). If p < 1 then var [ω] (Sp) = 0. Therefore,
|h (x)| ≥ 1 a.e. On the other hand for A ∈ M such that var [ω] (A) > 0 we
have:

1
var [ω] (A)

∣∣∣∣
∫

A

h (x)dvar [ω] (x)
∣∣∣∣ =

|ω (A)|
var [ω] (A)

≤ 1.

Thus, the integral IA (h) = 1
var[ω](A)

∫
A

h (x)dvar [ω] (x) lies in a 4-dimen-
sional ball B1 (0) of radius 1 for each A ∈ M such that var [ω] (A) > 0.
Suppose Br(a) is a ball of radius r and with center at the point a such that
Br (a)∩B1 (0) = ∅. Let us show that var [ω] (C) = 0, where C = h−1 (Br (a)).

Indeed, if var [ω] (C) > 0 then

|IC (h) − a| =
1

var [ω] (C)

∣∣∣∣
∫

C

(h (x) − a)dvar [ω] (x)
∣∣∣∣

≤ 1
var [ω] (C)

∫
C

|h (x) − a|dvar [ω] (x) ≤ r,

which is impossible since IC (f) ∈ B1(0) and we conclude that |h (x)| ≤ 1 (a.
e.). Therefore, |h (x)| = 1 (a. e.).

Let N := {x ∈ X : |h (x)| �= 1}. Since it was shown that var [ω] (N) = 0
we redefine h on N so that h (x) = 1 for all x ∈ N and obtain a function
with the desired properties. �

4. The Set of Quaternionic Measures as a Quaternionic Linear
Space

Suppose ω and μ are quaternionic measures on the same measurable space
(X,M). For any c ∈ H define quaternionic measures cμ, μc and ω + μ by

(cμ) (A) := cμ (A) ,

(μc) (A) := μ (A) c,

(ω + μ) (A) := ω (A) + μ (A) (4.1)

for any A ∈ M.
The set of all quaternionic measures on (X,M) endowed with these

operations forms a two-sided quaternionic module although the term “linear
quaternionic space” is used instead also, which we will use as well.

Let us put

‖ω‖ := var [ω] (X) . (4.2)
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It is direct to check that Formula (4.2) satisfies the definition of norm on
left-quaternionic (or right-quaternionic) linear space.

Theorem 4.1. The left-linear space of quaternionic measures on (X,M) with
the norm (4.2) is a quaternionic Banach space.

Proof. Suppose A ∈ M and {ωn} is a Cauchy sequence of quaternionic mea-
sures, that is, for every ε > 0 there exists a number N such that n > N and
m > N imply

‖ωn − ωm‖ < ε.

It follows from the theorem of completion of a normed space that there
exists the following limit ω := limn→∞ ωn . Let us show that ω is a quater-
nionic measure. Suppose {Bm} is a partition of A and put Cm = A\⋃m

k=1 Bk.

ω (Cm) = lim
n→∞ ωn (Cm) = lim

n→∞

(
ωn (A) −

m∑
k=1

ωn (Bk)

)

= ω (A) −
m∑

k=1

ω (Bk). (4.3)

Hence, ω (A) = ω (Cm)+
∑m

k=1 ω (Bk) and this implies finite additivity of ω.
Since var [ω] is bounded and Cm ↓ ∅ as m → ∞ we have var [ω] (Cm) →

0, m → ∞. Considering |ω (Cm)| ≤ var [ω] (Cm) it follows that ω (Cm) → 0,
m → ∞.

From Eq. (4.3) it follows that

ω (A) −
∞∑

k=1

ω (Bk) = 0.

Therefore, ω is a quaternionic measure and the linear space of quater-
nionic measures on (X,M) with the norm ‖·‖ is a quaternionic Banach space.

�

5. Derivatives of Measures

Denote by mk Lebesgue measure on R
k and denote the open ball with center

x0 ∈ R
k and radius r > 0 by

B (x0, r) :=
{
x ∈ R

k : |x − x0| < r
}

.

Definition 5.1. Suppose ω is a quaternionic Borel measure on R
k. The sym-

metric derivative of ω at x0 ∈ R
k w.r.t. mk is defined to be

(Dω) (x0) = lim
r→0

ω (B (x0, r))
mk (B (x0, r))

.

Let us put

(Mω) (x0) := sup
0<r<∞

var [ω] (B (x0, r))
mk (B (x0, r))

.
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The function (Mω) (x) is said to be the maximal function of the quater-
nionic measure ω.

Let us give without proof the following well-known statement [15].

Lemma 5.2. Consider a collection Bri
(xi), i = 1, . . . , n of balls in R

k and
denote by U =

⋃n
i=1 Bri

(xi). Then there is a subset S ⊂ {1, . . . , n} such that
• the balls Brj

(xj), j ∈ S are disjoint,
• U =

⋃
j∈S B3rj

(xj),
• mk(U) ≤ 3k

∑
j∈S mk(Brj

(xj)).

Theorem 5.3. If ω is a quaternionic Borel measure on R
k then for any ε > 0

mk

({
x ∈ R

k : (Mω) (x) > ε
}) ≤ 3k var [ω]

(
R

k
)

ε
. (5.1)

Proof. Taking into account that the measure mk is regular, it is sufficient to
prove (5.1) for any compact subset of

{
x ∈ R

k : (Mω) (x) > ε
}
. Suppose C ⊂{

x ∈ R
k : (Mω) (x) > ε

}
is a compact set. From the definition of (Mω) (x) it

follows that for any x ∈ C there exists a ball Br(x) such that var [ω] (Br(x)) >
εmk(Br(x)). Compactness of C implies a finite number of balls Brj

(xj),
j = 1, . . . ,m needed to cover it. By Lemma 5.2 there exists a subcollection
Brjl

(xjl), l = 1, . . . , s, s ≤ m of pairwise disjoint sets such that

mk(C) ≤ mk

(
s⋃

l=1

Brjl
(xjl)

)
≤ 3k

s∑
l=1

mk(Brjl
(xjl))

≤ 3k
s∑

l=1

var [ω]
(
Brjl

(xjl)
)

ε
≤ 3k

ε
‖ω‖ .

Thus, since this is true for any compact subset C hence considering the
regularity of measure mk this is true for

{
x ∈ R

k : (Mω) (x) > ε
}

. �
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