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AN ALGEBRAIC APPROACH FOR SOLVING FOURTH-ORDER
PARTIAL DIFFERENTIAL EQUATIONS

A. POGORUI!, T. KOLOMIIETS2 AND R. M. RODRIGUEZ-DAGNINO?

ABSTRACT. It is well-known that any solution of the Laplace equation is a real or imag-
inary part of a complex holomorphic function. In this paper, in some sense, we extend
this property into four order hyperbolic and elliptic type PDEs. To be more specific,
the extension is for a c-biwave PDE with constant coefficients, and we show that the
components of a differentiable function on the associated hypercomplex algebras provide
solutions for the equation.

1. INTRODUCTION

In this paper we are interested in finding the solution of the following equation

o ot o
(3~ 2amaye * oy ) v =0, >0 .

Depending on the value of ¢ we may consider three cases. Namely, the case where 0 < ¢ < 1
and we call it as the c-biwave equation of the elliptic type, the case where ¢ > 1 and we
call it as the c-biwave equation of hyperbolic type, and in the case where ¢ = 1 Eq.(1.1) is
the well-known biwave equation. The biwave equation has been used in modeling of d-wave
superconductors (see for instance [1], and references therein) or in probability theory [2, 3].
In [4] the author studied Eq.(1.1) in the case where ¢ < —1 and considered its application
to theory of plain orthotropy.

It is easily verified that any equation of the form

ot ot ot

where AC > 0 and AB < 0 can be reduced to Eq.(1.1) by changing variables. To obtain all
solutions of Eq. (1.1) for 1 # ¢ > 0 we will use the method developed in [7]. According to
such approach we need a commutative algebra with basis containing e;, es such that

e} —2celed +ej =0. (1.2)

Then, we study monogenic functions on the subspace of this algebra containing ey, es
and show that any solution of Eq. (1.1) can be obtained as a component of such monogenic
functions.
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2. HYPERBOLIC CASE

Firstly we study Eq. (1.1) in the case where ¢ > 1, which is said to be hyperbolic. Let
us consider an associative commutative algebra over the real field R

A.={zu+yf + ze+ofe: x,y,2z,v € R}

with a basis u, f, e, fe, where u is the identity element of A. and the following Cayley table
holds fe = ef, f> = u, e = u — mfe, where m = /2(c — 1).

The basis elements u, e satisfy Eq. (1.2).

It is easily verified that for ¢ > 1 algebra A, has the following idempotents

11 = k u-— fv2 e
Y kit ke kit ke
io . fv2 (2.1)

= u -+ e,
k14 ks k1 + ko
where k1 =+vec+1—+vVec—1, ks =+c+1++c—1.

Therefore, we have

il + ig =u
and
klkg \/§k2 \/§k1
1112 = — 3 2 fe
(k1 + k2) (k1 + ko) (k1 + k2)
2 2m

It is easily seen that

Consider a subspace B, of algebra A, of the following form
B, ={zu+vye|z,y € R}.

Definition 2.1. A function ¢ : B. — A. is called differentiable (or monogenic) on
B. if for any B. > w = zu+ ye there exists a unique element ¢’ (w) such that for any
h € B,

L glweh) — g (w)
R3e—0 5
where hg' (w) is the product of h and ¢’ (w) as elements of A..

= hg' (w),

It follows from [7] that a function g (w) = uwuy (z,y)+fus (x,y)+eus (z,y) +feuy (z,y)
is monogenic if and only if there exist continuous partial derivatives % Quilz.y) 4

’ oy ’
1,2,3,4 and it satisfies the following Cauchy-Riemann type conditions
0

e—g(w) = uagyg (w), Yw € Be,

or
6ul (I‘,y) _ 8“3 (f,y)

Ay ox
Qug (z,y) _ Oua (2,y)
Oy ox
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Ous (2,y) _ Oua(z,y)  Ous(z,y)

oy Oz ox
8’“/4 (‘T? y) _ 8’“’2 (.’IJ, y) 6u3 (.’IJ, y)
= -m .
dy ox ox
It is also proved in [7] that if ¢ is monogenic then its components u; (x,y) satisfies Eq.

(1.1).
By passing in B, from the basis u, e to the basis i1, i3, we have

w=zxu+ e—(m—sz)i +(gc+fkl>i
Yy \/iy 1 \/ﬁy 2.

Lemma 2.1. A function g : B. — A., where ¢ > 1, is differentiable if and only if it can
be represented as follows

g (w) = a(wi)ir + B (ws) iz, (2.3)

where w, = r— f\k}y, Wy = a:—l—ffy and o (wy), B (wa) have continuous partial derivatives

%0‘ (w1), 3%, a(wi), 3z5 (w2), ayﬁ (wo) satisfying

spo () =~ o ).
58 (2) = 10 B ).
Proof. Sufficiency can be verified directly. Indeed,
5o 0) = a )i+ 58 ()i
fTa—a(un)u —&-f\k}; (wa) iz

On the other hand, taking into account Egs. (2.1), (2.2), we have

0 k1 . k2 ) 0 ) 0 .
8 g( ) ( \/‘ \/‘ )( a(wl)zl+&vﬁ(w2)22>
B ko O 0
__f\ﬁa:)j (wl)ll+f\[8 ( )
Hence,
0 0
50 (1) = g (w).
Now let us prove necessity. Suppose that a function
g (w) =uuy (z,y) +fuz (z,y) + eus (z,y) + feus (2,y)

is monogenic on B.. Let us define

@) =u (w 00) = s (0.9)) +£ (2 0) = o ).

Thus, we have

)
8w = (1 o) + i ) +£ (2 ) + s ).
(

e )

o (au4 (@,y) ke <3ula(§,y) - mama(j,y)))
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- 2 —2m+1

/2 o YA or /2

ﬁ a’U/4 (may)
+f (\/5 m+ 1) a0

ks Ouy (2,y) @WWH(’“
ox

) Qus (z,y)

Taking into account that

ko k3
—m4+1l=vc2-1+c=-=,
V2 2

we have 8%0‘ (wy) = ff%%a (wy).
Much in the same manner, it can be shown that 8%6 (we) = fk—l2 aaxﬂ (we). O
Remark 2.1. Considering variables =, y1 = —%y and x, yo = \k;ﬁy, we have
0 0
—a=f— 2.4
a5 " = Far® (2.4)
95 95
Yo Ox

Hence, it is easily verified that if the components oy, as of a(wy) = aq (w1) + fag (w)
have continuous partial derivatives %ak (w1) and aa—;ozk (w1), k = 1,2 then they satisfy
1

9? 0?
(602 ~ o) e =0

Similarly, the components 51, B2 of B (ws) = B1 (w2) + 62 (w2) satisfy the wave equation

0? 02
(657 =) e =0

Theorem 2.2. u(z,y) is a solution of Eq. (1.1) for ¢ > 1 if and only if for some
i,7 € {1,2} it can be represented as follows

the wave equation

u(z,y) = i (w1) + B (w2),
where a; (w1) , B (w2) are four times continuous differentiable components of « (w1) and
B (w2) of monogenic function g (w) in the decomposition (2.3) i.e.,

9 (w) = a(w) i+ B (w2) iz,
where a (w1) = a1 (w1) + fag (w1), B (we) = B1 (w2) + 02 (w2) satisfy Eq. (2.4).
Proof. As it was mentioned above u (x,y) = a; (w1) + B (w2) is a solution for ¢ > 1 of Eq.

(1.1).

Now suppose that u (x,y) is a solution of Eq. (1.1). It is easily verified that

ot ot o 02 0? 0? 02
(g~ 2t + ) e = (g~ 3z (G2~ g ) o =0 29)

It is easily seen that Eq. (2.5) is equivalent to the set of the following systems

2 92
(& - Z)u@y) =y,

2 2
2y 2 ) v () =0

or
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2 2
(& - Z)u@y) =@y,
2 2
(& - 2) vy =0

Let us consider the first system. Since any solution of (88722 — 38722) vg (x,y) = 0 is of the
k

form vy (z,y) = f1 (x + yk) + fo (x — yx ), where f;, ¢ = 1,2 are arbitrary twice differentiable
functions it follows from the second equation of the system that

vi(z,y) = fi(x+y)+ f2(z—w1).
Thus, the first equation of the system is

2 2
<aax2—§y§>umy) =filety)+ fale—u). (2.6)

It is easily seen that a partial solution of Eq. (2.6) is

k3 ko ) ( ko
Uz,y) = 52— (Filz— =y |+ F(z+—=
( y) k%k%(l( \/iy 2 \/iy
k2
= k2 1k2 (Fl (.T+y1)+F2<.’I}_y]_>)7
T
where F, = fi, k= 1,2.
Thus, the general solution of the system is as follows

k2
u(z,y) = g1 (x+y2)+gz(x—y2)+m(F1 (+y1) + Fa(z— 1))
1 2

2
Let us put ay (wy1) = k%k_ilk% (Fi(x4y1)+ Fo(x—y1)) and Ba (w2) = g1 (& + y2)+g2 (T — y2).

Taking into account that (88—; - ;—;2) [kzkfsz (Fy (z+11) + F (x — yl))} =0 and
1 1 2

8xZ

( o 8372% [91 (z + y2) + g2 ( — y2)] = 0 we conclude the proof for the first system.
The case of the second system can be proved similarly. g

3. ELLIPTIC CASE

Now we consider an associative commutative algebra A., where 0 < ¢ < 1, over the
complex field C with a basis u, e and the following Cayley table ue = eu = e, e = u+iue,
where p = 1/2(1 — ¢). The matrix representations of u and e are

ot oy (01
“No 1)\t i)

Hence, we have the following traces of these representations
tr(uu) =2, tr(ue) =iy, tr(ee)=2—p’

Since

tr (uu) tr(ue) \ _
det < tr (ue) tr(ee) ) =21+ #0,

then, A, is a semi-simple algebra [8].
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By following similar steps as in Eq. (2.1) we can show that for 0 < ¢ < 1 algebra A, has
the following idempotents

k1 V2 ko V2

I_= u—+ e, I,= u-— e, 3.1
ki + ks kit ks R T N Ny (8-1)
where k1 = vVe+1—ivV1—c, ks =+vVec+14+iv1 —c.
It is also easily verified that these idempotents also satisfy
I_ —+ I+ =u
and
I, I+ == 0
It is straightforward to see that
k k
- . (3.2)

_ 1.

V2 N

Lemma 3.1. All non-zero elements of subspace B, = {xu+ye|x,y € R} of algebra
A, are invertible, that is, if 0 # w € B, then there exists w™! € B,.

1

Proof. Suppose w = su+te € B.. Let us show that there exists w™" =zu+ye, z,y € R

such that ww™! = 1. Indeed, the equation
(su+te)(zu+ye)=u
has a unique solution since the determinant of the system
sr+ty=1,
tr+ (s+iut)y =0,
where z,y are unknown, is A = s? —t? +iuts and A = 0 if and only if s =t = 0. A function

f(w), w € B, is said to be differentiable if it is differentiable in the common sense, i.e., for
all w € B, there exists the following limit

S Aw) = f (w)
B.3Aw—0 Aw

= f'(w).

It is easily seen that if f is differentiable then it is monogenic and hence, it satisfies the
following Cauchy-Riemann type of conditions [7]

0 0
et (w) = uz f (w)
or in this case we have
aul (‘T7 y) _ 8“3 (.’IJ, y) auQ (ﬁ, y) _ au4 (.’E, y)

Ay oxr Ay oxr
auB (xv y) _ 8ul (‘T7 y) _ 8u4 ({E, y)
Oy oz "0
au4 (xv y) _ 871/2 ($7 y) + 8u3 ({I?, y)
Oy oz "0

In [7] it is also proved that if a function f (z,y) = uuy (z,y) + iuz (x,y) + eus (z,y) +
iewuy (,y) is monogenic then u; (z,y) satisfies Eq. (1.1). We should mention that a con-
structive description of monogenic functions in a three-dimensional harmonic algebra was
studied in [5, 6].

By passing from the basis u, e to the basis I_, I, we have

ky

w=zxu+ e—(sc—l—k2 )I +(aj— )I
- ye = \/iy — \/iy +-
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|

Lemma 3.2. A function f: B. — A, 0 < ¢ < 1, is differentiable if and only if it can
be represented as follows

f(w)=a(w)l- + B(wa) 4,

where wi =z +iy, 11 =2, y1 = —i By, we = a2 +iye, 22 =, yo =i 5y and a (wy),
B (wa) are analytical functions of variables wy, wq, Tespectively, as follows

0 .0 0 .0

" (w1) =iz-a(w), 873/2/8 (w2) =1i7-f (w2).

Proof. The sufficiency can be verified directly. Indeed,

9] 0 1 0 y2

— = — I+ — I

5 ()= o) T 4 ) T2

ky O ki 0
:f767104(11;1)I_+178—2 (w2) Iy

- 29 A 1.
\/gaxa(wl) ﬁaxﬂ<w2> +
On the other hand, taking into account Egs. (2.4), (3.1), we have

eij@®=(5%1—j%h)(iﬂwml%wiBWQh)

ke 0 0
= 5on (wy) I- —73* (w2) I+
Hence,
0 0
e%f(w)za—yf(w).

Now let us prove necessity. Suppose that a function
fw) =ui(z,y) +iue (z,y) +eus (z,y) +ieus (z,y)

is monogenic on B, i.e., e 0‘1 (w) = % (w).
By using Eq. (3.1) we can represent f (w) in the following manner

f(w) =a(w) -+ B(w2) I+,

where
memuw+%wmm+(wmm+%mww)
k1 ) k1
MWbmww—ﬂ%mw+(wmw—ﬁmmw)
Consider

0 1 = 2 i) 21 L) 2

_@ia +ﬁ<lﬁ
\/iayl - \@ayz *

Then, taking into account Eq. (3.1), we have
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Therefore,
0 .0
8—y1a (wy) =1 %a (wy),
0 . 0
8742 (w2) =1 %5 (w2)
Suppose a(w1) = a1 (w1) + ias (wy) and B (we) = B1 (w2) +iP2 (we). Tt follows from

the proof of Lemma 3.2 that «; (w1) + 55 (w2), 4,j € {1,2} are solutions of Eq. (1.1) for
0<e<l. |

Theorem 3.3. u(x,y) is a solution of Eq. (1.1) for 0 < ¢ < 1 if and only if for some
i,7 € {1,2} it can be represented as follows

U ($7y) = Q; (wl) + ﬁ] (LUQ) )
where o; (w1), B; (we) are components of a (wi) and B (w2) of monogenic function g (w)
in the decomposition (2.3) i.e.,

fw)=a(w)l-+ B (w2) I+,
where a (w1), B (w2) are complex analytical functions of respective variables.

Proof. As mentioned above «; (w1) + 5; (w2), 4,5 € {1,2} are solutions of Eq. (1.1) for
0<e<1.

If u (x,y) is a solution of Eq. (1.1) for 0 < ¢ < 1 much in the same way as in proving
Theorem 2.2 we can show that u (z,y) = o; (w1) + 55 (w2). O
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