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Hydrodynamic normalization conditions
in the theory of degenerate Beltrami equations
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We study the existence of normalized homeomorphic solutions for the degenerate Beltrami equation f- =u(z)f, in
the whole complex plane C , assuming that its measurable coefficient w(z), |u(z)<1 a. e., has compact support
and the degeneration of the equation is controlled by the tangential dilatation quotient KT u (2,20)- We show that if
K (z,2) has bounded or finite mean oscillation dominants, or Satzsfzes the Lehto type integral divergence condi-
tion, then the Beltrami equation admits a regular homeomorphic W1 U solution f with the hydrodynamic normaliza-
tion at infinity. We also give integral criteria of Calderon-Zygmund or *Orlicz types for the existence of the normalized
solutions in terms of K Z (z,2,) and the maximal dilatation K, (z) .

Keywords: BMO, bounded mean oscillation, FMO, finite mean oscillation, degenerate Beltrami equations, hydro-
dynamic normalization.

1. Introduction. It is well known that quasiconformal mappings and functions and their generaliza-
tions, the mathematical basis for the study of which is the analytic and geometric theory of linear
and quasilinear partial differential equations of elliptic type, are a powerful tool in the theory of two-
dimensional subsonic compressible flows (see, e. g., [1, Ch. 2]). The Beltrami PDE, that generates
quasiconformal mappings, plays here a crucial role. Among the variety of approaches related to the
study of such flows, special attention is paid to the proof of existence theorems for homeomorphisms
of the whole complex plane that satisfy the degenerate Beltrami equation, i. e. when the condition of
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uniform ellipticity for the equation is violated. Some effective criteria for the existence of such ho-
meomorphic solutions can be found, e. g., in [2-9], see also the references therein. Taking into account
the behaviour of a subsonic flow at infinity (see [1, Ch. 3]), the existence of theorems for homeomor-
phic solutions of the degenerate Beltrami equation with hydrodynamic normalization at the infinity
acquires a special role. In this paper, we just give some integral criteria for the existence of such solu-
tions both in terms of the tangential dilatation quotient and the maximal dilatation coefficient.

Let D be a domain in the complex plane C and let p: D — C be a measurable function with
|;,t(z) | <1 a.e.in D . A Beltrami equation is an equation of the form

L=u@), (1)

with the formal complex derivatives f; =(f, +if,) /2, [, =(/, —if,) /2, z=x +iy , where f, and
J, are usual partial derivatives of / in x and y, correspondingly. The function p is said to be
the complex coefficient for the Beltrami equation. The measurable function

_ @)
1-|u(@)|
is called the maximal dilatation of equation (1) at point z . The Beltrami equation is called degen-
erate if ess sup K, (z)=co.
It is known that if K, is bounded, then the Beltrami equation has homeomorphic solutions
(see, e. g., historic comments with relevant references in the monographs [2] and [3]). The cor-
responding criteria on the existence of homeomorphic solutions for the degenerate Beltrami equa-

tions were formulated both in terms of K, and the more refined quantity
2

K, (2): (2)

1_2_20

w(z)

=)

that takes into account not only the modulus of the complex coefficient p but also its argument.
This quantity is called the tangent dilatation quotient of the Beltrami equation (1) with re-
spect to a point z, € C. Note that

K} (2,20>:=‘ (3)

K.'(2)<K (z,20)<K,(z) VzeD, z,eC. (4)

2. The main lemma. Assuming that the complex coefficient pu(z), |u(z)<1 a.e.in C, has
compact support, we study the existence of homeomorphic solutions for the degenerate Beltrami
equation (1) in the whole complex plane C with hydrodynamic normalization: f(z)=z+o0(1) as
z —> oo, Recall also that a function € — C in Sobolev’s class Wﬁ)’f is called a regular solution of
the Beltrami equation (1) if / satisfies (1) a. e. and its Jacobian J,(z)>0a.e.in C.

Lemma 1. Let w: C — C be measurable with compact support S, |L(2) | <la.eandK,e LY(S).
Suppose that, for every zy€ S, there is a family of measurable functions , ¢ :(0,€y) = (0,°),
e (0,ey), gy =¢€(2y) >0, such that

L, @)= fu., (i <o Vee (0ey) )
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and

j Ky (z,20) W2 (z=zgdm(z)=0(I% () ase—0 VzyeS. (6)

e<lz—z¢|<gy

Then equation (1) has a regular homeomorphic solution f with f(z)=z+0(1) as z — .

Here and further dm (z) stands for the Lebesgue measure inC .

Proof. By Lemma 3 and Remark 2 in [6] the Beltrami equation (1) has a regular homeomor-
phic solution f in C under the hypotheses on u given above. Note that f is holomorphic and
univalent (one-to-one), i. e. conformal, and with no zeros outside of a closed disk |z| <R because
the support S of W is compact. _ _

Let us consider the function F (¢)=f(1/¢), ge C,:=C\ {0}, C=CuU{e}, that is conformal
in a punctured disk D, \ {0}, where D, ={ce C: |g| <r}, r=1/R, and 0 is its isolated singular
point. In view of the Casorati-Weierstrass theorem (see, e. g., Proposition I1.6.3 in [10]), 0 cannot
be an essential singular point because of the mapping F is homeomorphic.

Moreover, 0 cannot be a removable singular point of F . Indeed, let us assume that F has a
finite limit hmF (¢)=c . Then the extended mapping F is a homeomorphism of C into C . How-

ever, by a stereographlc projection of C is homeomorphic to the sphere S? and, consequently,
by the Brouwer theorem on the invariance of domain the set C :=F (C) is openin C (see, e. g.,
Theorem 4.8.16 in [11]). In addition, the set C is compact as a continuous image of the compact
space C . Hence the set C\ C #@ isalso open in C . The latter contradicts the connectivity of C
(see, e. g., Proposition I.1.1 in [10]).

Thus, 0 is a (unique) pole of the function F in the disk. Hence the function ®({):=1/F ({)
has a removable singularity at 0 and ®(0)=0. By the Riemann extension theorem (see, e. g.,
Proposition 11.3.7 in [10]), the extended function @ is conformal in I, . By the Rouche theorem
@’(0)#0 (see, e. g, Theorem 63 in [12]), and, consequently, the function & has the expansion of
the form ¢,{+c,¢* +... in the disk D, with ¢, #0. Hence

1
1 z Cy _ _ _

= =2 1+2 =c;'z—c %, +o(1

f@)= @(1/2) R v 01( : ) V'z=cey +o (1)

along the set {ze C:|z|> R}, i. e. the function ¢,f(z)+c, /¢, gives the desired regular homeo-
morphic solution of the Beltrami equation with the hydrodynamic normalization at infinity.

In particular, by relations (4) we obtain from Lemma 1 the following.

Corollary 1. Let p:C—C be with compact support S, |u(z)|<1 a. e, K, e LY(S) and
y:(0,€)) —(0,0), g, >0, be a measurable function with

f\p (t)dt = oo, fw (t)dt <oo Vee(0,¢g). @)
0 €
Suppose that
[ K @ v (z2-2 hdm(2) < o{j\p(t)dtJ ase >0 Yz es. (8)
e<|z—z|<gy
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Then the Beltrami equation (1) has a regular homeomorphic solution f with the hydrodynamic nor-
malization f(z)=z+0(1) as z —>oo.

3. BMO and FMO. Recall that a real-valued function # in a domain D in C is said to be of
bounded mean oscillation in D , abbr. ue BMO(D), if ue L] . (D) and

i, =sup— [ |u(z) =ty ldm (2) <, (©)

B |B|B

where the supremum is taken over all discs  in D and
1
Ug =— |u(z)dm(2).
* 1B i

The class BMO was introduced by John and Nirenberg (1961) in the paper [13] and soon
became an important concept in harmonic analysis, partial differential equations and related areas
(see, e. g., [14]).

Following [15], given a domain D in C, we say that a function ¢@:D — R has finite mean
oscillation at a point z, € D , abbr. e FMO(z,), if

Ty | [0G)—8, Goldm ()<=, (10)

OTE By,e)

where @, (z,) is the mean value of @(z) over B(z,,e):={ze C:|z-z,|<¢g}.
The following statement follows by the triangle inequality.
Proposition 1. If, for a collection of numbers ¢, € R, e€ (0,¢,],

fm—y | [0G)—0.m(z)<w, (11)

e—>0 TE B(zy.€)

then ¢ is of finite mean oscillation at z, .
In particular, choosing here @, =0, e€ (0,¢,] in Proposition 1, we obtain the following.
Corollary 2. If, for a point z,€ D ,

Im— | |eGHmG)<e, (12)

OOTE By,e)

then @ has finite mean oscillation at z,, .

Versions of the next lemma have been first proved for the class BMO in [5]. For the FMO
case, see the paper [15] and the monographs [8] and [9].

Lemma 2. Let D be a domainin C and let ¢:D — R be a non-negative function of the class
FMO(z,) forsome zye D . Then

J‘ (P(Z)dm(21) - = O(loglogé) as €0 (13)
eslzzi<e (| z—2z, |log 7’

7|

Jorsome g, € (0,8,) where 8, =min(e °,d,), dy=sup|z—z,|.
zeD
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4. The main results. Choosing y(t)=1/(tlog(1/t)) in Lemma 1, we obtain by Lemma 2 :

Theorem 1. Let n:C — C be a measurable function with a compact support S and |p(z)[<1
a. e. Suppose that Kg (2,2))<Q,,(2) a.e.in U, for every point zy€ S, a neighbourhood U, of
zy and a function Q, U, —[0,e] in the class FMO(z,). Then the Beltrami equation (1) has
regular homeomorphic solutions | with the hydrodynamic normalization f(z)=z+o0(1) as z — .

Since K g (z,29) <K, (z) forall z and z, € C, we obtain the following consequence.

Corollary 3. Let w:C—C be measurable with a compact support S and |pn(z)|<1 a. e.
Suppose that K, (z)<Q(z) a. e.in C with Q:C —[1,e] in the class BMO. Then the Bel-
trami equation (1) has regular homeomorphic solutions [ with the hydrodynamic normalization
f(z)=z4+0(1) as z — oo,

By Corollary 2, we obtain the next consequence of Theorem 1.

Corollary 4. Let pw:C—C be measurable with a compact support S, |u(z)|<1 a. e,
K, eL'(D) and

lim— j KT(Z Zy)dm(z) <oo Yz, €S. (14)
e-0 Te” B(z.€)

Then the Beltrami equation (1) has regular homeomorphic solutions [ with the hydrodynamic nor-
malization f(z)=z+0(1) as z — .
Next, if we take in Lemma 1 y(¢)=1/t, we come to Calderon-Zygmund type conditions.
Theorem 2. Let w:C — C be measurable with a compact support S, |u(z)|<1 a.e., K, e LY(S)
and, for some g, >0,

[ Kl (zz) (2)2 =o([logl/e]’) ase—0 Yz €S. (15)
e<|z— 20‘<€0 | |
Then the Beltrami equation (1) has regular homeomorphic solutions f with the hydrodynamic nor-
malization f(z)=z+0(1) as z — .

Remark 1. Choosing in Lemma 1 the function y()=1/(tlog1/t) instead of y()=1/t ,we
are able to replace (15) by

; 2
Ky (2.2 dm(z) - :o[[loglogﬂ J ase—0. (16)

S<|2_20<8°(|z—20|10g| ! |
Z_ZO

In general, we are able to give here the whole scale of the corresponding conditions, using the
function y(7) in terms of the iterated logarithms: 1 /(¢ log1 /t - loglogl Jt-...-log...log1/t).

Ifwe takein Lemma 1 y, (©)=w, (t):= 1/[tkT (2y,t)], where k (zy, r) is the integral mean
of K, "' (2,2,) over the circle s (zy,7): {z e C:|z—z, |=r}, wearrive at the Lehto type criterion.

Theorem3 Let w:C — C bemeasurablewith a compact support S , |u(z)|<1a.e, K €L (S)
and, for some g, >0,

€9

| TL = VzeS. (17)

0 rleH (zy,7)
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Then the Beltrami equation (1) has regular homeomorphic solutions [ with the hydrodynamic nor-
malization [(z)=z+o0(1) as z — .

Corollary 5. Let u:C — C be measurable with a compact support S, |u(z)|<1 a. e,
K,e LY(S) and

kI (zg,£)=0(logl/e) ase—0 Vzyes. (18)

Then the Beltrami equation (1) has regular homeomorphic solutions [ with the hydrodynamic nor-
malization f(z)=z+o0(1) as z — .
Remark 2. In particular, the conclusion of Corollary 5 holds if

K§(2,20)=0[10g ] as z—z, VzyeS. (19)

|Z—Zo|

Moreover, (18) can be replaced by the weaker conditions

ky (29:€) :0[[k)gl-loglogl-....log...logl]) Vz,eS. (20)
€ € €

Combining Theorems 2.5 and 3.2 in [7] and Theorems 3, we come to the Orlicz type conditions.
Theorem 4. Let . : C — C be measurable with a compact support S , |u(z)|<1a.e, K W€ LY(S)
and, for a neighborhood U, of z,
J@. (Kl (z.2)))dm(z)<=  VzeS, (21)
U,

where @, :[0,o0] [0, ] is a convex non-decreasing function with

| logo, (t)d—f = 4o, A(z)>0, VzeS. (22)
t
A(z)

Then the Beltrami equation (1) has regular homeomorphic solutions [ with f(z)=z+o(1) as
Z —> oo,
Corollary 6. Let n:C — C be measurable with a compact support S , |u(z)|<1 a. e. and

[ K, @)dm(z)<e (23)
s

Jfor a convex non-decreasing function @ :[0, ] — [0, | with
Jlogo(©)%; == (24)
)

Jfor some &> 0. Then the Beltrami equation (1) has regular homeomorphic solutions f with hydrody-
namic normalization at the infinity.

Remark 3. By Theorem 5.1 in [7] the condition (24) is not only sufficient but also necessary to
have a regular solution in C for arbitrary Beltrami equations (1) with the integral constraints (23).
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Corollary7. Let u: C — C be measurable with a compact support S , |u(z)|<1a.e., K u € L'(S)
and, for a neighborhood U, of z, and a.(zy)>0,

)KL z, 2
J.ea( 0 O)dm(z)<oo Vz,eSs. (25)

U,
Then the Beltrami equation (1) has regular homeomorphic solutions f, normalized by f(z)=z+o0 (1)
as z —> oo,

See the paper [4] and the monograph [8], Ch. A1, for similar results.

In particular, the following consequence can be found as Theorem 20.4.9 in the monograph
[2], where the corresponding solutions are called principal solutions of the Beltrami equations.

Corollary 8. Let w:C — C be measurable with a compact support S, |w(z)|<1 a. e. and, for
some o.> 0,

jeaK“(z)dm (2) <eo. (26)
s

Then the Beltrami equation (1) has regular homeomorphic solutions | with the hydrodynamic nor-
malization f(z)=z+o0(1) as z — .

It is known that if @ has a compact support, then there exists a number oy, >1 such that the
Beltrami equation (1) for p satisfying (26) with o> oy, admits a unique principal solution f
with f(z)—ze W2(C) (see, e. g., [2, Ch. 20]).

The first two authors are partially supported by the project “Mathematical modelling of complex
dynamical systems and processes caused by the state security”, No. 0123U100853, of National Aca-
demy of Sciences of Ukraine and by the Grant EFDS-FL2-08 of the fund of the European Federation
of Academies of Sciences and Humanities (ALLEA).
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rAPOANHAMIYHI YMOBM HOPMYBAHHA
B TEOPII BUPO/IP)KEHMX PIBHSAHDb BEJIBTPAMI

JlocmikeHo icHyBaHHS HOPMaJIi30BaHUX TOMeOMOP(MHUX PO3B’SI3KiB I BUPOKEHOTO piBHAHHS benbrpami y
BCilf KOMIIEKCHIN IIJIOMNHI 3 TIPUIYIEHHAM, 1110 HOTO BUMIPHUI KOeillieHT Ma€e KOMIIAKTHUI HOCIH, a BUPO-
JUKEHHST PIBHSHHST KOHTPOJIIOETHCS KoeillieHTOM TaHTeHIiabHol artaraitii. /loBeseno, mo sSKIo KoediienT
TaHTEHIIAJILHOI iuIaTallii Mac OOMesKeHi Yu CKiHYeHH] cepeiti OCIIIIINHI ToMiHAHTY 200 33/[0BOJILHSIE YMOBY
iHTerpanbHoi po3bixkHocTi THILy JIexTo, To piBHsHHSA Besbrpami JoIycKae peryIsspHuil roMeoMOpMHUI PO3B’ 30K
i3 ripoANHaMi4HOI0 HOpMAJI3aIfi€lo Ha HeCKIHYeHHOCTI. TakoX pO3IJIAHYTO JeAKi iHII iHTerpanbHi KpuTepil
tuny Kanpaepona-3irmyna i OpJriva s icHyBaHHSI HOPMAJTi30BaHUX PETYJISIPHUX PO3B’SI3KIB K y TePMiHaX
koedillieHTa TaHTEHIIATBHOI ANIATAalll, TaK 1 B TepMiHaxX KoedillieHTa MaKCHMaTIbHOI AnaTalii. 30KpeMa, Ha-
BeJICHO HU3KY KPUTEPiiB iCHYBaHHS PETyISPHIX TOMeOMOPMHIX PO3B’3KiB 711 BUPO/IKEHOTO PiBHIHHSA bemb-
TpaMi i3 TipoAnHaAMIUHOI0 HOPMAJTi3alli€lo Ha HeCKIHYeHHOCT] B TePMiHax iTepaTuBHUX jorapudmis. Otpumani
pe3yIbTaTi MOXKYTh OyTH BUKOPHUCTAHI ISt TOCTI/KEHHS KPAalOBUX 3a/a4 TiIPOMEXaHIKN B CHJIBHO aHi30TpOTI-
HUX 1 HEOJTHOPITHUX cepe/IOBUIIAX.

Kmouosi cnoea: BMO, obmeancene cepeone xonusanns, FMO, ckinuenne cepeone Koausanms, 6upooicemi pieHsamnms
Bexvmpanmi, ziopodunamiuni ymosu Hopmyeans.
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