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  QUATERNION-VALUED MEASURE AND ITS TOTAL 

VARIATION 
 

Kolomiiets Tamila, 
Assistant of the Department of Mathematical Analysis, 

Business Analysis and Statistics 

Zhytomyr Ivan Franko State University 

 

The notion of a measure is one of the most fundamental objects in mathematics and 

it would be superfluous to talk much about this. We present now a few lines only in 

order to explain what we are going to do in the paper, for more details the reader is 

referred, for instance, to [1], but for many other sources as well.  

Let 𝑋 be a non-empty set and let 𝔐 be a 𝜎-algebra of subsets of 𝑋. A measure 

(sometimes called a positive measure) is a function 𝜇 defined on the measurable space 

(𝑋, 𝔐) whose range is in [0, ∞] =: ℝ+ and which is countably additive, i.e., if {𝐴𝑖} is 

a disjoint countable family of elements of 𝔐 then  

 𝜇(⋃∞
𝑖=1 𝐴𝑖) = ∑∞

𝑖=1 𝜇(𝐴𝑖).
 (1) 

This definition includes tacitly that the series on the right-hand side converges to a 

non-negative number or to ∞.  

We assume that there exists at least one 𝐴 ∈ 𝔐 for which 𝜇(𝐴) < ∞. This excludes 

the trivial situation of the measure identically equal to ∞.  

Some important properties are:  

1. 𝜇(∅) = 0. 

2. Any measure is finite additive, i.e., holds for a finite number of pair-wise disjoint 

elements of 𝔐. 

3. Any measure is monotone: if 𝐴, 𝐵 are in 𝔐 and 𝐴 ⊂ 𝐵 then 𝜇(𝐴) ≤ 𝜇(𝐵). 

4. If {𝐴𝑛}𝑛∈ℕ ⊂ 𝔐 , 𝐴 = ⋃∞
𝑛=1 𝐴𝑛 , 𝐴1 ⊂ 𝐴2 ⊂ ⋯ ⊂ 𝐴𝑛, …, then 𝜇(𝐴𝑛) ⟶ 𝜇(𝐴) 

as 𝑛 ⟶ ∞. 

5. If {𝐴𝑛}𝑛∈ℕ ⊂ 𝔐 , 𝐴1 ⊃ 𝐴2 ⊃ ⋯ ⊃ 𝐴𝑛 … , 𝐴 = ⋂∞
𝑛=1 𝐴𝑛 , 𝜇(𝐴1) < ∞ , then 

𝜇(𝐴𝑛) ⟶ 𝜇(𝐴) as 𝑛 ⟶ ∞. 

Definition 1. A measure on a measurable space (𝑋, 𝔐) is called 𝜎-finite if there 

exists a collection of sets {𝐴𝑛, 𝑛 ∈ ℕ} ⊂ 𝔐 such that ∪𝑛=1
∞ 𝐴𝑛 = 𝑋 and for each 𝑛 ≥

1 𝜇(𝐴𝑛) < ∞.  

Let us recall a notion of a signed measure or charge. 

Definition 2. A signed measure (or a charge) on a measurable space (𝑋, 𝔐) is a 

function  

 𝜆: 𝔐 → ℝ ∪ {−∞, ∞}     (2) 

such that 𝜆(∅) = 0 and 𝜆 is countably additive.  

The origin of the notion of the measure explains why it takes just non-negative 

values. At the same time the question arises: can the measure be complex-valued? 

A complex measure 𝑤 is a complex-valued countably additive function defined on 
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𝔐. A good source of basic information may be Chapter 6 of the book [2]. 

In accordance with the definition if 𝑤  is identically zero then 𝑤  is a positive 

measure. A positive measure is allowed to have +∞ as its value; but it is proved that a 

complex measure 𝜇 has as its values the complex numbers only: any 𝜇(𝐸) is in ℂ. The 

real measures are defined as 𝜎-additive real-valued functions and they form a subclass 

of the complex measures. Complex measures are not monotone in general but they 

verify the other above properties. It is worth noting that for a given 𝜎-algebra the 

collections of positive and of complex measures have, in general, a non-empty 

intersection but the former is not necessarily a subcollection of the latter; the same kind 

of relation exists between the positive and the real measures. 

The definition of a complex measure can be rephrased as follows. Consider a 

countable family {𝐸𝑖}  of elements of 𝔐  which are pairwise disjoint and let 𝐸: =
⋃∞

𝑖=1 𝐸𝑖 ; the family {𝐸𝑖} is called a partition of 𝐸. Then a complex measure 𝑤 is a 

complex function on 𝔐 such that  

 𝑤(𝐸) = ∑∞
𝑖=1 𝑤(𝐸𝑖)     (3) 

for any 𝐸 ∈ 𝔐 and for every partition {𝐸𝑖} of 𝐸. 

Notice that the requirement of being {𝐸𝑖} in (3) any partition of 𝐸 has a strong 

implication: one can change the order of the enumeration in {𝐸𝑖} , thus every 

rearrangement of the series is convergent to the same complex number; it is known that 

hence the series in (3) converges in fact absolutely. 

The main goal of this work is to show that some ideas from [2] extend onto 𝜎-

additive functions with values in Hamilton quaternions [3]. 

We assume in the sequel that 𝑋 is a non-empty set. 

Definition 3. Let 𝔐 be a 𝜎-algebra of subsets of a set 𝑋. A quaternionic measure 

𝜔 on a measurable space (𝑋, 𝔐) is a quaternion-valued function on 𝔐 such that for 

any collection of sets {𝐴𝑛, 𝑛 ∈ ℕ} ⊂ 𝔐 that 𝐴𝑛 ∩ 𝐴𝑚 = ∅ whenever 𝑛 ≠ 𝑚 we have  

 𝜔(⋃∞
𝑛=1 𝐴𝑛) = ∑∞

𝑛=1 𝜔(𝐴𝑛).    

 (4) 

Since the union of sets 𝐴𝑛 is not changed if the subscripts are permuted, every 

rearrangement of series (4) must converge to 𝜔(⋃∞
𝑛=1 𝐴𝑛). For this reason, we assume 

that the series converges absolutely. 

Let us ask the question: Is it possible to find a positive measure 𝜇 on a measurable 

space (𝑋, 𝔐)  such that |𝜔(𝐴)| ≤ 𝜇(𝐴)  for any 𝐴 ∈ 𝔐? That is, we ask to find a 

positive measure 𝜇 that dominates the Euclidean module of 𝜔. It is easily seen that if 

there exists such a dominant measure then for any partition {𝐴𝑛, 𝑛 ∈ ℕ} ⊂ 𝔐, we have: 

 ∑∞
𝑛=1 |𝜔(𝐴𝑛)| ≤ ∑∞

𝑛=1 𝜇(𝐴𝑛) = 𝜇(⋃∞
𝑛=1 𝐴𝑛).   

Let us define the set function v𝑎𝑟[𝜔](⋅) on 𝔐 as follows: 

 v𝑎𝑟[𝜔](𝐴): = sup ∑∞
𝑛=1 |𝜔(𝐴𝑛)|,   

where the supremum is taken over all partitions of 𝐴. It is clear that 

 |𝜔(𝐴)| ≤ v𝑎𝑟[𝜔](𝐴) ≤ 𝜇(𝐴). 
We will call the function v𝑎𝑟[𝜔] the total variation of 𝜔. 

Theorem 1. The total variation 𝑣𝑎𝑟[𝜔]  of a quaternionic measure 𝜔  on a 

measurable space (𝑋, 𝔐) is a positive measure on (𝑋, 𝔐).  
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Proof. Suppose {𝐴𝑛, 𝑛 ∈ ℕ} ⊂ 𝔐 is a partition of 𝐴. Let {𝐴𝑛𝑚} be a partition of 

𝐴𝑛, 𝑛 ∈ ℕ. Hence, we have: 

 ∑∞
𝑛=1 ∑∞

𝑚=1 |𝜔(𝐴𝑛𝑚)| ≤ v𝑎𝑟[𝜔](𝐴). 
Then, taking into account that 𝐴𝑛 = ⋃∞

𝑚=1 𝐴𝑛𝑚, we have: 

 ∑∞
𝑛=1 sup ∑∞

𝑚=1 |𝜔(𝐴𝑛𝑚)|   ≤ v𝑎𝑟[𝜔](𝐴). 
Hence,  

 ∑∞
𝑛=1 v𝑎𝑟[𝜔](𝐴𝑛) ≤ v𝑎𝑟[𝜔](𝐴).    (5) 

Let us show that  

 ∑∞
𝑛=1 v𝑎𝑟[𝜔](𝐴𝑛) ≥ v𝑎𝑟[𝜔](𝐴). 

Suppose {𝐵𝑚}  is a partition of 𝐴 . Then for a fixed 𝑚 ∈ ℕ , the collection 
{𝐵𝑚 ∩ 𝐴𝑛}𝑛∈ℕ is a partition of 𝐵𝑚 and for a fixed 𝑛 ∈ ℕ, the collection {𝐵𝑚 ∩ 𝐴𝑛}𝑚∈ℕ 

is a partition of 𝐴𝑛. Thus, we have: 

 ∑∞
𝑚=1 |𝜔(𝐵𝑚)| = ∑∞

𝑚=1 |∑∞
𝑛=1 𝜔(𝐵𝑚 ∩ 𝐴𝑛)| ≤ ∑∞

𝑚=1 ∑∞
𝑛=1 |𝜔(𝐵𝑚 ∩

𝐴𝑛)| 
 = ∑∞

𝑛=1 ∑∞
𝑚=1 |𝜔(𝐵𝑚 ∩ 𝐴𝑛)| ≤ ∑∞

𝑛=1 |𝜔(𝐴𝑛)|.    (6) 

Since Eq. (6) holds for every partition {𝐵𝑚} of 𝐴, it holds that  

 v𝑎𝑟[𝜔](𝐴) ≤ ∑∞
𝑛=1 |𝜔(𝐴𝑛)|. 

Therefore, together with (5) one obtains: 

 v𝑎𝑟[𝜔](𝐴) = ∑∞
𝑛=1 v𝑎𝑟[𝜔](𝐴𝑛). 

It is easily seen that  

 v𝑎𝑟[𝜔](∅) = 0. ◼ 

Some comments on this Theorem are given in [4]. 

Theorem 2. If 𝜔 is a quaternionic measure on a measurable space (𝑋, 𝔐), then  

 v𝑎𝑟[𝜔](𝑋) < ∞. 
Proof. First of all we need an auxiliary inequality. 

Suppose ℎ1, … , ℎ𝑛  are arbitrary quaternions, then there exists a subset 𝑆  of 

{1, … , 𝑛} such that 

 |∑𝑙∈𝑆 ℎ𝑙| ≥
3(𝜋2−8)

4𝜋3
∑𝑛

𝑙=1 |ℎ𝑙|. (7) 

Every quaternion 𝑞 = 𝑞0 + 𝑞⃗, where 𝑞0 is the scalar part and 𝑞⃗ the vector part of 

𝑞, can be represented in the following form  

 𝑞 =
𝑞0

|𝑞|
+

𝑞⃗⃗

|𝑞⃗⃗|

|𝑞⃗⃗|

|𝑞|
= |𝑞| (cos𝛼 +

𝑞⃗⃗

|𝑞⃗⃗|
sin𝛼), 

where 𝛼 is a solution of the system of equations cos𝛼 =
𝑞0

|𝑞|
 and sin𝛼 =

|𝑞⃗⃗|

|𝑞|
. It is easily 

seen that this system has a unique solution 𝛼0  in the segment 0 ≤ 𝛼 ≤ 𝜋. One can 

show that there is a unique vector 𝑣⃗0  such that 𝑣⃗0  and 𝑞⃗  have same direction and 

|𝑣⃗0| = 𝛼0. 

Thus, every quaternion has the following unique representation  

 𝑞 = |𝑞| (cos|𝑣⃗0| +
𝑣⃗⃗0

|𝑣⃗⃗0|
sin|𝑣⃗0|) , 0 ≤ |𝑣⃗0| ≤ 𝜋. (8) 

Write ℎ𝑙 = |ℎ𝑙| (cos|𝑣⃗𝑙|   +
𝑣⃗⃗𝑙

|𝑣⃗⃗𝑙|
sin|𝑣⃗𝑙|  ) , where 𝑣⃗𝑙 = 𝛼𝑙𝐼 + 𝛽𝑙𝐽 + 𝛾𝑙𝐾 , 0 ≤

|𝑣⃗𝑙| ≤ 𝜋, is vector as 𝑣⃗0 in Eq 8. 
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Consider 𝜃 = 𝜃1𝐼 + 𝜃2𝐽 + 𝜃3𝐾, where 0 ≤ √𝜃1
2 + 𝜃2

2 + 𝜃3
2 ≤ 𝜋 and let 𝑆(𝜃) be a 

set of all 𝑙 ∈ 𝑆 such that cos(|𝑣⃗𝑙 − 𝜃|)   > 0. Then  

|∑
𝑙∈𝑆(𝜃⃗⃗⃗)

ℎ𝑙| = |∑
𝑙∈𝑆(𝜃⃗⃗⃗)

ℎ𝑙𝑒−𝜃⃗⃗⃗| ≥ R𝑒 ∑
𝑙∈𝑆(𝜃⃗⃗⃗)

ℎ𝑙𝑒−𝜃⃗⃗⃗ = ∑𝑛
𝑙=1 |ℎ𝑙|cos+(|𝑣⃗𝑙 − 𝜃|), 

where cos+(|𝑣⃗𝑙 − 𝜃|)   = cos(|𝑣⃗𝑙 − 𝜃|)  𝐼
{cos(|𝑣⃗⃗𝑙−𝜃⃗⃗⃗|)  >0}

. 

Choose 𝜃0 so as to maximize last sum, and put 𝑆(𝜃0). This maximum is at least as 

large as the average of the sum over 𝜃 = 𝜃1𝐼 + 𝜃2𝐽 + 𝜃3𝐾 , and this average is 
3(𝜋2−8)

4𝜋3
∑𝑛

𝑙=1 |ℎ𝑙|, because 

 
1

𝑚(𝐵(𝜋))
∭

|𝑣⃗⃗𝑙−𝜃⃗⃗⃗|≤𝜋
cos+(|𝑣⃗𝑙 − 𝜃|)  𝑑𝜃 = 

 
1

𝑚(𝐵(𝜋))
∭

|𝜃⃗⃗⃗|≤𝜋
cos+(|𝜃|)  𝑑𝜃 =⃗⃗⃗⃗⃗⃗ ⃗⃗  

 
1

𝑚(𝐵(𝜋))
∭

|𝜃⃗⃗⃗|≤
𝜋

2

cos(|𝜃⃗|)  𝑑𝜃 = 

 
3

4𝜋4 ∫
2𝜋

0
∫

𝜋

2

−
𝜋

2

∫
𝜋

2
0

cos(𝜃)  cos(𝜋𝜌)  𝜌2𝑑𝜌𝑑𝜃𝑑𝜑 =
3(𝜋2−8)

4𝜋3
, 

where 𝑚(𝐵(𝜋)) =
4

3
𝜋4 is the volume of the ball of radius 𝜋.  

We now proceed to prove the inequality (7). 

Suppose that there is a set 𝐴 ∈ 𝔐 such that v𝑎𝑟[𝑤](𝐴) = ∞. Put 𝑡 =
4𝜋3

3(𝜋2−8)
(1 +

|𝑤(𝐴)|). Since v𝑎𝑟[𝑤](𝐴) > 𝑡 there is a partition {𝐴𝑖} of 𝐴 such that  

 ∑𝑛
𝑖=1 |𝑤(𝐴𝑖)| > 𝑡 

for some 𝑛. Let us apply Lemma with ℎ𝑖 = 𝑤(𝐴𝑖) to conclude that there is a set 𝐸 ⊂
𝐴 which is a union of some sets 𝐴𝑖 and  

 |𝑤(𝐸)| >
3(𝜋2−8)

4𝜋3
𝑡 > 1. 

Considering 𝐹 = 𝐴\𝐸, it follows that 

 |𝑤(𝐹)| = |𝑤(𝐴) − 𝑤(𝐸)| ≥ |𝑤(𝐸)| − |𝑤(𝐴)| >
3(𝜋2−8)

4𝜋3
𝑡 − |𝑤(𝐴)| = 1. 

Thus, we have split 𝐴  into disjoint sets 𝐸  and 𝐹  such that |𝑤(𝐸)| > 1  and 

|𝑤(𝐹)| > 1. 

Now, if v𝑎𝑟[𝑤](𝑋) = ∞ then we can split 𝑋 into sets 𝐸1 and 𝐹1 with |𝑤(𝐸1)| > 1 

and v𝑎𝑟[𝑤](𝐹1) = ∞ . Then we split 𝐹1  into 𝐸2  and 𝐹2  with |𝑤(𝐸2)| > 1  and 

v𝑎𝑟[𝑤](𝐹2) = ∞.  Continuing in this way, we obtain countably infinite disjoint 

collection {𝐸𝑛}   with |𝑤(𝐸𝑛)| > 1 for all 𝑛. The countable additivity of 𝑤 implies that 

 𝑤(⋃∞
𝑛=1 𝐸𝑛) = ∑∞

𝑛=1 𝑤(𝐸𝑛). 
But this series cannot converge since 𝑤(𝐸𝑛) does not tend to 0 as 𝑛 → ∞. This 

contradiction shows that v𝑎𝑟[𝑤](𝑋) < ∞.  ◼ 

Remark 1. The common term measure includes +∞ as an admissible value. Thus 

the measures do not form a subclass of the quaternionic measures.  

A detailed justification of these results can be found in the paper [5].  
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