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Analytic functions of a vector argument and partially conformal
mappings in continuum complex spaces
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Abstract. A vector generalization of the main concepts in the theory of functions of a complex variable—
the concepts of the modulus and the argument of the complex number—is proposed. The authors introduce
a certain generalization of the concept of holomorphic functions and mappings in the case of continuum
complex spaces.

1. Introduction

In works [1–3], the linear vector space C∞, i.e., the space of ordered countable sequences of complex
numbers was considered. Thus, C∞ is the Cartesian product of a countable number of instances of the
complex plane C: C∞ = C× C× . . .× C× . . ..

In this work, the results published in the original sources [1–3] are transferred onto the linear vector
space Ccont whose basis has a power of continuum.

Let N, R, and C be the sets of natural, real, and complex numbers, respectively, R+ = [0,+∞),
and C the extended complex plane.

2. Theory in space Ccont

Let Ccont be the Cartesian product of a continuum number of C instances: Ccont = C× C× . . .×
C× . . .. Similarly, Rcont = R× R× . . .× R× . . ., Rcont ⊂ Ccont.

The basis of the space Ccont is a continuum set of vectors

(1, 0, 0, ...), (0, 1, 0, ...), ...

with a continuum number of coordinates.
Let F (α) be a mapping of the segment [0, 1] on the basis of the space Ccont; i.e., every coordinate

plane in the space Ccont is related to a number α, α ∈ [0, 1].
The elements of the space Ccont are vectors with a continuum number of complex coordinates

Z = {zα} ∈ Ccont, α ∈ [0, 1].
By analogy with finite-dimensional and countable cases, Ccont can be represented as a direct sum

of the continuum number of instances of the algebra of complex numbers C.
Let us transfer some concept of works [1–3] onto the case of the space Ccont.

1. Algebra Ccont

Definition. A binary operation acting from Ccont × Ccont into Ccont by the rule

Z ·W = {zα · wα}, α ∈ [0, 1] , (2.1)
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where Z = {zα} ∈ Ccont, W = {wα} ∈ Ccont, will be called the vector product of elements Ccont.
Note that this operation converts Ccont into a commutative, associative algebra with the unity 1 =
(1, 1, ..., 1, . . .) ∈ Ccont.

Invertible to the product operation introduced in this way are those and only those elements
Z = {zα} ∈ Ccont for which zα ̸= 0 for an arbitrary α ∈ [0, 1].

Inverse to such elements Z ∈ Ccont are elements Z−1 = {z−1
α } ∈ Ccont because Z ·Z−1 = Z−1 ·Z = 1.

Therefore, the set Θ of all elements A = {aα} ∈ Ccont that have at least one coordinate ak = 0 is
a set of elements with no invertible ones.

2. Conjugation

Definition. Let us put each element W = {wα} ∈ Ccont, α ∈ [0, 1], in correspondence with the
vector-conjugate element W = {wα} ∈ Ccont, where wα is a number that is complex conjugate to wα

in the usual sense. The correspondence defined in such a way gives an automorphism Ccont with a
fixed subspace Rcont.

3. (Vector) module

In works [1–3], a vector generalization of the concept of the module of a number was proposed. Let
us extend it onto the space Ccont. Let R+,cont = R+ × R+ × . . . × R+ . . ., where the quantity R+ is
continuum.

Definition. The vector module of an arbitrary element Z = {zα} ∈ Ccont is called a vector
|Z| := {|zα|} ∈ R+,cont, α ∈ [0, 1].

Note that for an arbitrary Z = {zα} ∈ Ccont, the equality

Z · Z = |Z|2 = |Z|2 (2.2)

holds.

4. Vector norm

Definition. A vector X = {xα} ∈ Rcont is called non-negative (strictly positive) and denoted as
X ≥ O (X > O) if xα ≥ 0 for all α ∈ [0, 1] (xα > 0 at least for one α ∈ [0, 1]), O = (0, 0, . . . , 0, . . .).

Definition. We say that a vector X = {xα} ∈ Rcont, α ∈ [0, 1], is greater than or equal to (strictly
greater than) a vector Y = {yα} ∈ Rcont, α ∈ [0, 1], if X− Y ≥ O (X−Y > O).

Definition. A vector space Y is called vector-normalized if each y ∈ Y is in correspondence with
a non-negative vector ∥y∥ ∈ R+,cont that satisfies the following conditions:

1) ∥y∥ ≥ O , with ∥y∥ = O ⇐⇒ y = 0Y (0Y is the zero of the space Y);
2) ∥γy∥ = |γ|∥y∥, ∀y ∈ Y, ∀γ ∈ C;
3) ∥y1 + y2∥ ≤ ∥y1∥+ ∥y2∥, ∀y1, y2 ∈ Y.
The above definition of the module satisfies the definition of the norm. Hence, the vector module is

a vector norm in the algebra Ccont : ∥·∥ = |·|. Then a unit open polycircle ∥z∥ < 1 (1 = (1, 1, . . . , 1, . . .))
is a unit ball, and Tcont = {Z ∈ Ccont : ∥Z∥ = 1} a unit sphere in the algebra Ccont. Note that

a) |Z1 · Z2| = ∥Z1 · Z2∥ = ∥Z1∥∥Z2∥ = |Z1||Z2|, ∀Z1, Z2 ∈ Ccont;
b) |1| = ∥1∥ = 1, (1 = (1, 1, . . . , 1, . . .)).

5. Vector argument a ∈ Ccont

Definition. The vector argument of a vector A = {aα} ∈ Ccont\O, α ∈ [0, 1], is an infinite-
dimensional real vector defined by the formula

argA = {arg aα},
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where arg aα, α ∈ [0, 1], is either the principal argument value or a value following from the specific
content of the problem where the vector A ∈ Ccont appears.

6. Compactification of Ccont

As a compactification of Ccont = C×C×. . .×C×. . . , we take the space Ccont = C×C×. . .×C×. . .,
which will be called the infinite-dimensional space of the theory of functions. Infinite are those points
of Ccont that have at least one infinite coordinate.

The convergence in Ccont is defined as a coordinate-wise convergence uniform over the coordinate
numbers.

In this case, the introduced convergence generates a topology in the space Ccont.
The Cartesian product B =

∏
α
Bα, where Bα, α ∈ [0, 1], are domains in C, will be called the domain

in Ccont.

7. Differentiability

Let a domain D ⊂ Ccont and a mapping F : D → Ccont be given, where F = {fα(Z)} = {fα(X+iY)},
α ∈ [0, 1], fα(X + iY) = Uα(X,Y) + iVα(X,Y) = Uα({xβ}, {yβ}) + iVα({xβ}, {yβ}), β ∈ [0, 1]. F =
U + iV, U = U(X,Y) = {Uα(X,Y)}, α ∈ [0, 1], V = V(X,Y) = {Vα(X,Y)}, α ∈ [0, 1], Z = X + iY =
{xα}+ i{yα} ∈ D, α ∈ [0, 1].

Let the functions Uk({xβ}, {yβ}), Vk({xβ}, {yβ}), β ∈ [0, 1], have continuous partial derivatives
over all variables xβ , yβ , β ∈ [0, 1], everywhere in D. Then the Jacobi matrix looks like(

UX UY
VX VY

)
, (2.3)

where UX,UY,VX, and VY are infinite matrices of the following forms: UX =
[
{U (α)

xβ }
]
, UY =

[
{U (α)

yβ }
]
,

VX =
[
{V (α)

xβ }
]
, VY =

[
{V (α)

yβ }
]
, V

(α)
xp = ∂

∂xβ
Vα, V

(α)
yβ = ∂

∂yβ
Vα, U

(α)
xβ = ∂

∂xβ
Uα, U

(α)
yβ = ∂

∂xβ
Uα,

α, β ∈ [0, 1].
In our case, the symbol [·] means an infinite matrix.
Then the Cauchy–Riemann equation acquires the following form:{

UX = VY,
UY = −VX.

(2.4)

Definition. Let D be a domain in the space Ccont. A mapping F : D → Ccont that is continuously
differentiable in D and satisfies the matrix equation (2.4) in D will be called the holomorphic mapping
of the domain D.

We assume that a holomorphic mapping F : D → Ccont, D ⊂ Ccont, is biholomorphic if F has an
inverse mapping that is holomorphic in F(D).

Consider the definition of uniform convergence inside the unit polycircle of a certain sequence of
mappings.

Let Ucont
r = Ur × Ur × . . . × Ur × . . ., where Ur = {z : z ∈ C, |z| < r}, Ucont

1 := Ucont. Ucont
r =

U r × U r × . . .× U r × . . ., and Fp : Ucont → Ccont is a sequence of mappings.
Definition. We assume that a sequence Fp, p = 1,∞, uniformly converges to a certain mapping

F0 : Ucont → Ccont inside Ucont if, for an arbitrary ε > 0 and 0 < r < 1, there exists a number
n0 = n0(ε, r), n0 ∈ N, such that

∥Fp(Z)− F0(Z)∥ ≤ ε · 1

for all Z ∈ Ucont
r and all p > n0.
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Definition. A holomorphic mapping

F : Ucont → Ccont, F(Z) = {fα(zα)} , fα =

∞∑
p=1

a(α)p zpα,

will be called the analytic function of the vector argument if the series

F(Z) =
∞∑
p=1

ApZp, Ap = {a(α)p }, Z ∈ Ucont, p = 1,∞, α ∈ [0, 1]

uniformly converges inside the polycircle Ucont.

Definition. Let δ ∈ (0, 1) be a fixed number. Then a mapping

F(Z) = {fα(zα)} , Z ∈ Ucont,

where each fα(zα), α ∈ [0, 1], is a one-sheeted function in the unit circle such that δ < |f ′
α(0)| < 1

δ ,
α ∈ [0, 1], will be called the partially conformal mapping of the unit polycircle.

In this case, δ = δ(F).
Note that the narrowing of partially conformal mappings onto the coordinate plane is a conformal

mapping.

8. Presentation in the vector-Cartesian form

Let Z = {zα} ∈ Ccont. Then

Z = {zα} = {Rezα + iImzα} = {Rezα}+ {iImzα} =

= {Rezα}+ i{Imzα} = ReZ+ iImZ = X + iY =

= {xα}+ i{yα} ∈ Rcont + iRcont,

where X = ReZ = {Rezα} = {xα}, Y = ImZ = {Imzα} = {yα}, α ∈ [0, 1]. That is, Ccont =
Rcont + iRcont.

9. Representation in the vector-polar form

Using the above definitions, we obtain the following chain of equalities:

Z = {zα} = {|zα|eiαα} = {|zα|}{eiαα} =

= |Z| [cos argZ+ i sin argZ] = |Z|ei argZ,

where
cosβ = {cosβα}, sinβ = {sinβα},

exp iβ = {exp iβα}, β = {βα} ∈ Rcont, Z = {zα} ∈ Ccont,

α ∈ [0, 1].
In a similar way, we determine lnZ, where Z = {zα} ∈ Ccont \Θ:

lnZ = ln |Z|+ i argZ = {ln |zα|+ i arg zα}.

Here are examples of partially conformal mappings that are given by elementary functions:
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1) the fractional-linear function

T =
A1Z+ A2

A3Z+ A4
, Z ̸= −A4

A3
,A1A4 − A2A3 ̸= O,

where A1,A2,A3, and A4 are fixed complex numbers, and Z = {zα}, α ∈ [0, 1], is a complex variable;
2) the power function W = Zn = {znα}, where n is a natural number, which is holomorphic over

the whole plane Ccont, α ∈ [0, 1];
3) the Zhukovskii function W = 1

2

(
Z+ 1

Z
)
, which is holomorphic in Ccont \Θ;

4) the polynomial Pn(Z) =
n∑

k=0

AkZk, Z ∈ Ccont;

5) 1
Z−Z0

, Z− Z0 ∈ Ccont \Θ;

6) expZ = {ezα} = 1+ Z+ 1
2Z

2 + . . .+ 1
k!Z

k + . . ., Z ∈ Ccont, α ∈ [0, 1];

7) (1− Z)
1
2 = 1− 1

2Z+ 1
8Z

2 − . . .+
1
2(

1
2
−1)...( 12−k+1)

k! Zk − . . . , Z ∈ U∞ = {Z : ∥z∥ < 1}.

10. Polycylindrical Riemann theorem

As is known, a domain B ⊂ C is of hyperbolic type if its boundary is a connected set that contains
more than one point.

Let 0 < δ < 1 and A = {aα} ∈ Ccont. Then B = B(δ) = Bδ(A) =
∏
α
Bα ⊂ Ccont, A ∈ Bδ(A), where

each domain Bα is of hyperbolic type, δ < r(Bα, aα) <
1
δ , α ∈ [0, 1]. For an arbitrary 0 < δ < 1, the

domain B(δ) = Bδ(A) is called a finite with respect to A polycylindrical domain of hyperbolic type.

Riemann theorem. Let A ∈ Ccont and 0 < δ < 1. Then an arbitrary finite with respect to A
polycylindrical domain B = Bδ(A) ⊂ Ccont of hyperbolic type is biholomorphically equivalent to the unit
polycircle Ucont = {W ∈ Ccont : ∥W∥ < 1}.

Proof. Let B = B(δ) =
∏
α
Bα be a domain indicated in the Riemann theorem, A = {aα} ∈ B, aα ∈ Bα,

α ∈ [0, 1], and wα = fα(zα) is a function that is holomorphic in Bα and univalently and conformally
maps the domain Bα, α ∈ [0, 1] , into the unit circle |wα| < 1 so that f(aα) = 0, f ′(aα) > 0.

Then the biholomorphic mapping FB(Z) = {fα(zα)}, F′
B(Z) = {f ′

α}, α ∈ [0, 1], satisfies the
normalizing conditions

FB(A) = O, F′
B(A) = {f ′

m(aα)} > O,

and is the only such mapping into the unit polycircle. Then the mapping inverse to the mapping
FB(A) is a partially conformal mapping of the unit polycircle. The theorem is proved.

Thus, in the algebra Ccont, the norm is defined by the equality ∥Z∥ := |Z|. The vector metrics in
Ccont: ρ(Z1,Z2) = ∥Z1 − Z2∥. We will call the so-defined vector norm and metrics polycylindrical.
The convergence by the polycylindrical norm uniformly over the numbers is given by the relationship
Zp −→

p→∞
Z0 ⇐⇒ ∥Zp − Z0∥ −→

p→∞
O = (0, 0, . . . 0, . . .) ⇐⇒ |z(α)p − z

(α)
0 | ⇒

p→∞
0, ∀α ∈ [0, 1] , where the

symbol "⇒" denotes the uniform convergence over α ∈ [0, 1].
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