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Analytic functions of a vector argument and partially conformal
mappings in continuum complex spaces
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Abstract. A vector generalization of the main concepts in the theory of functions of a complex variable—
the concepts of the modulus and the argument of the complex number—is proposed. The authors introduce
a certain generalization of the concept of holomorphic functions and mappings in the case of continuum
complex spaces.

1. Introduction

In works [1-3], the linear vector space C*, i.e., the space of ordered countable sequences of complex
numbers was considered. Thus, C* is the Cartesian product of a countable number of instances of the
complex plane C: C*=CxCx...xCx....

In this work, the results published in the original sources [1-3] are transferred onto the linear vector
space C.ony whose basis has a power of continuum.

Let N, R, and C be the sets of natural, real, and complex numbers, respectively, Ry = [0, +00),
and C the extended complex plane.

2. Theory in space Cyy

Let Ccont be the Cartesian product of a continuum number of C instances: Ceopy = C x C x ... X
C x .... Similarly, Reopt = R xR x ... x R X ..., Reont € Ceont-
The basis of the space Ceopt is a continuum set of vectors

(1,0,0,...),(0,1,0,...), ...

with a continuum number of coordinates.

Let F'(«) be a mapping of the segment [0, 1] on the basis of the space Ceopt; i.€., every coordinate
plane in the space Ccopt is related to a number o, a € [0, 1].

The elements of the space Ccoy are vectors with a continuum number of complex coordinates
7 = {Za} S Ccont7 o€ [0, 1]

By analogy with finite-dimensional and countable cases, C.on¢ can be represented as a direct sum
of the continuum number of instances of the algebra of complex numbers C.

Let us transfer some concept of works [1-3] onto the case of the space Ceopt.

1. Algebra C.,t

Definition. A binary operation acting from Ceont X Ceont into Ceont by the rule

Z-W ={zy - wa},a €[0,1], (2.1)
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where Z = {zo} € Ceont, W = {wa} € Ceont, Will be called the vector product of elements Ceopt.
Note that this operation converts C.qy into a commutative, associative algebra with the unity 1 =
(1,1,...,1,...) € Ceont-

Invertible to the product operation introduced in this way are those and only those elements
Z = {zq} € Ceont for which z, # 0 for an arbitrary « € [0, 1].

Inverse to such elements Z € Ceont are elements Z ! = {zojl} € Ceont because Z-Z ' =712 = 1.

Therefore, the set © of all elements A = {a,} € Ccont that have at least one coordinate ap = 0 is
a set of elements with no invertible ones.

2. Conjugation

Definition. Let us put each element W = {w,} € Ceont, @ € [0, 1], in correspondence with the
vector-conjugate element W = {wWy} € Ceont, where W, is a number that is complex conjugate to wq
in the usual sense. The correspondence defined in such a way gives an automorphism C.t with a
fixed subspace Reont.

3. (Vector) module

In works [1-3], a vector generalization of the concept of the module of a number was proposed. Let
us extend it onto the space Ceong. Let Ry cont = R4 X Ry x ... x Ry ..., where the quantity R, is
continuum.

Definition. The vector module of an arbitrary element Z = {z,} € Ccont is called a vector
|Z| := {]za|} € Ry cont, @ € [0,1].

Note that for an arbitrary Z = {24} € Ceont, the equality

7-7 = \Z\z = |Z|2 (2.2)
holds.

4. Vector norm

Definition. A vector X = {z4} € Reont is called non-negative (strictly positive) and denoted as
X>0 (X>0)if o >0 for all @ € [0,1] (x4 > 0 at least for one a € [0, 1]), O = (0,0,...,0,...).

Definition. We say that a vector X = {24} € Reont, @ € [0, 1], is greater than or equal to (strictly
greater than) a vector Y = {yn} € Reont, @ € [0,1], if X =Y > O (X-Y > O).

Definition. A vector space Y is called vector-normalized if each y € Y is in correspondence with
a non-negative vector ||y|| € R4 cont that satisfies the following conditions:

1) |lyll > O, with [|y|| = O <= y = Oy (Oy is the zero of the space Y);

2) vyl = IVlllyll, Yy € Y, ¥y € C;

3) gt + 9l < lnll + s, Yo 0 € V.

The above definition of the module satisfies the definition of the norm. Hence, the vector module is
a vector norm in the algebra Ceont : ||-|| = |-|. Then a unit open polycircle ||z]] <1 (1 = (1,1,...,1,...))
is a unit ball, and Teont = {Z € Ceont : ||Z]] = 1} a unit sphere in the algebra Ceont. Note that

a) |21 2o = |21 - 2l = | 2| Zall = 24| Zal, V21, Za € Coons

b) [1]=|1=1, (1=(1,1,...,1,...)).

5. Vector argument a € Ccopt

Definition. The vector argument of a vector A = {aq} € Ceont\O, o € [0,1], is an infinite-
dimensional real vector defined by the formula

arg A = {arga,},
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where arga,, o € [0,1], is either the principal argument value or a value following from the specific
content of the problem where the vector A € Cgont appears.

6. Compactification of C

As a compactification of Ceony = CxCx...xCx. .., we take the space Ceont = CxCx...xCx. ..,
which will be called the infinite-dimensional space of the theory of functions. Infinite are those points
of Ceont that have at least one infinite coordinate.

The convergence in Ceoyt is defined as a coordinate-wise convergence uniform over the coordinate
numbers.

In this case, the introduced convergence generates a topology in the space Ceong.

The Cartesian product B = [] By, where B, a € [0, 1], are domains in C, will be called the domain

(0%

in @cont-
7. Differentiability

Let a domain D C Ccopt and a mapping F : D — Ceont be given, where F = {fo(Z)} = {fo(X+iY)},
S [O, 1]7 fa(X + iY) = Ua(XaY) + iVa(X7 Y) = Ua({xﬁ}a {yﬁ}) + iVa({xﬁ}v {yﬁ})a [EAS [Oa 1]' F=
U+iV, U=UXY) = {Us(X,Y)}, a € [0,1], V=V(X,Y) = {Vo (X, YV)}, a € [0,1], Z = X +iY =
{za} +i{yar €D, a € [0,1].
Let the functions Uy({zs}, {ys}), Vi({zs},{ys}), B € [0,1], have continuous partial derivatives
over all variables x3, yg, 5 € [0, 1], everywhere in ID. Then the Jacobi matrix looks like

Ux Uy
(VX VY) , (23)
where Uy, Uy, Vx, and Vy are infinite matrices of the following forms: Ux = [{Ugﬁ‘;‘)}} , Uy = [{Ué?)}] ,

Ve = [, W = [ VD) = Vi VD) = Ve U = 200, U =
a, € 10,1].

In our case, the symbol [-] means an infinite matrix.

Then the Cauchy—Riemann equation acquires the following form:

{ Ux = Vy,

Uy = —Vx. 24)

Definition. Let D be a domain in the space Ceont. A mapping F : D — Cgopt that is continuously
differentiable in I and satisfies the matrix equation (2.4) in D will be called the holomorphic mapping
of the domain D.

We assume that a holomorphic mapping F : D — Ceont, D C Ceong, is biholomorphic if F has an
inverse mapping that is holomorphic in F(D).

Consider the definition of uniform convergence inside the unit polycircle of a certain sequence of
mappings.

Let UP = U, x Uy x ... x Uy % ..., where U, = {z : z € C,|2| < r}, Usont ;= peont, T =
U, xUpx...xUpp % ... a;nd Fp : U™ — Ceopy is a sequence of mappings.

Definition. We assume that a sequence F,, p = 1,00, uniformly converges to a certain mapping
Fo : U©™ 5 Ceone inside UM if, for an arbitrary e > 0 and 0 < r < 1, there exists a number
no = no(e,r), ng € N, such that

IF,(Z) - Fo(@)] < -1

—cont

for all Z € U, and all p > nyg.
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Definition. A holomorphic mapping
o
F: U — Ceont, F(Z) = {fa(za)}a Ja = Zal(ja)zg,
p=1

will be called the analytic function of the vector argument if the series

F(Z) =Y AZP, Ay={a{}, ZeU™ p=Too, acl0l]
p=1

uniformly converges inside the polycircle URt,

Definition. Let § € (0,1) be a fixed number. Then a mapping
F(Z) = {fal2a)}, Z U™,

where each fo(z4), @ € [0,1], is a one-sheeted function in the unit circle such that § < [f4(0)| < %,
a € [0, 1], will be called the partially conformal mapping of the unit polycircle.

In this case, 0 = §(F).

Note that the narrowing of partially conformal mappings onto the coordinate plane is a conformal
mapping.

8. Presentation in the vector-Cartesian form

Let Z = {z4} € Ccont. Then
Z ={za} = {Rezq +ilmzy} = {Rezq} + {ilmza} =

={Rezo} +i{Imzo} = ReZ +ilmZ = X +iY =

= {$a} + i{ya} € Reont + Reont,

where X = ReZ = {Rezo} = {za}, Y = ImZ = {Imzy} = {ya}, @ € [0,1]. That is, Ceont =
Rcont + Z‘Rcon‘n-

9. Representation in the vector-polar form

Using the above definitions, we obtain the following chain of equalities:

Z = {z} = {|zale’*} = {|zalHe} =
= |Z| [cosarg Z + isinarg Z] = |Z|e' 8L,

where

cos 8 ={cos Bo}, sinf = {sinfS,},
exp 7//6 = {eXP iﬁa}> 6 = {ﬁa} € RCOI’HZ? 7 = {Za} S (Cconta

a € [0,1].
In a similar way, we determine InZ, where Z = {24} € Ceont \ ©:

InZ =In|Z| +iargZ = {In|zo| + iarg z, }.
Here are examples of partially conformal mappings that are given by elementary functions:
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1) the fractional-linear function

MZ + A, Ay
= ETR2 s B A A — AvA

where A, Ao, Az, and A4 are fixed complex numbers, and Z = {z,}, o € [0, 1], is a complex variable;
2) the power function W = Z™ = {z1}, where n is a natural number, which is holomorphic over
the whole plane Ceont, @ € [0,1];
3) the Zhukovskii function W = % (Z + %), which is holomorphic in Ceont \ ©;

n
4) the polynomial P,,(Z) = > ApZF, Z € Ceont;
k=0
5) 2_7%7 7 — 7y € Ceont \ ©;
6) expZ={e*} =1+Z+312%+ ...+ 57"+ ..., Z € Coom, a € [0,1];

101 1_
N-ni=1-1z+ 12— ¢ GG g e — (7 o) < 1),

| o

10. Polycylindrical Riemann theorem

As is known, a domain B C C is of hyperbolic type if its boundary is a connected set that contains
more than one point.

Let 0 <d <1and A = {as} € Ceont- Then B = B(5) = Bs(A) = [] Ba C Ceont, A € Bs(A), where

each domain B, is of hyperbolic type, § < r(Bq,aq) < %, a € [0,1]. For an arbitrary 0 < 6 < 1, the
domain B(d) = Bs(A) is called a finite with respect to A polycylindrical domain of hyperbolic type.

Riemann theorem. Let A € Ceone and 0 < § < 1. Then an arbitrary finite with respect to A

polycylindrical domain B = Bs(A) C Ceont of hyperbolic type is biholomorphically equivalent to the unit
polycircle U™ = {W € Ceopy : |W| < 1}.

Proof. Let B =B(6) = [[ Bo be a domain indicated in the Riemann theorem, A = {an} € B, a, € By,
[e%

a € [0,1], and wy = fa(zq) is a function that is holomorphic in B, and univalently and conformally
maps the domain B, « € [0, 1], into the unit circle |w,| < 1 so that f(aq) =0, f'(aqa) > 0.
Then the biholomorphic mapping Fg(Z) = {fa(2a)}, Fp(Z) = {f.}, o € [0,1], satisfies the
normalizing conditions
FB(A) =0, ]F]/B(A) = {f;n(aa)} > 0,

and is the only such mapping into the unit polycircle. Then the mapping inverse to the mapping
Fp(A) is a partially conformal mapping of the unit polycircle. The theorem is proved. O

Thus, in the algebra Ccont, the norm is defined by the equality ||Z|| := |Z|. The vector metrics in
Ceont: p(Z1,Z2) = ||Z1 — Zo||. We will call the so-defined vector norm and metrics polycylindrical.
The convergence by the polycylindrical norm uniformly over the numbers is given by the relationship

Zy — Lo <= |Zp — Zo|| — O = (0,0,...0,...) <= |25 = 2{*| = 0, Va € [0,1], where the
p—00 p—00

pP—00
symbol "=2" denotes the uniform convergence over a € [0, 1].
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