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Extreme problem for a mosaic system of
points on the open sets and
non-overlapping domains
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Dedicated to the memory of Professor Oleksandr Bakhtin

Abstract. In the geometric theory of functions of a complex variable, the
well-known direction is related to the estimates of the products of the inner
radii of pairwise non-overlapping domains. This direction is called extreme
problems in classes of pairwise non-overlapping domains. One of the problems
of this type is considered in the present work.

Amnorargis. Y reoMerpuyHiii Teopil PpyHKII KOMILIEKCHOT 3MIHHOI 106pe Bi-
JIOMHI HAIIPSAM IOB’sI3aHUI 3 OIiHKaMu JOOyTKIB BHYTDIIIHIX pajiyciB B3a-
€MHO HelepeTHHHUX obsacreil. lleit HAIPsiM OTPUMAaB HA3BY €KCTPEMAJILHIX
3a/lad Ha KJjacax IOIApHO HenepeTHHHUX obsacreit. OxHa 3 33/a4 TaKOro
THIy 1 PO3IIAHYTA Y Iiif POOOTi.

1. INTRODUCTION

This article belongs to the theory of extreme problems on classes of
pairwise non-overlapping domains, which is a separate trend in the geo-
metric theory of functions of a complex variable. The start of this direction
is related with the work by M. Lavrent’ev [12]. He found the maximum
of a functional including the product of the conformal radii of two non-
overlapping domains relatively to fixed points of the complex plane. In
1947, G. Goluzin solved a similar problem for three fixed points of the
complex plane [10]. After that, this field of research began to develop
rapidly. In this connection, we mention the results of many authors, in par-
ticular, Yu. Alenitsyn, M. Lebedev, J. Jenkins, P. Tamrazov, P. Kufarev,
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G. Kuz’'min, and others. In 1974, P. Tamrazov advanced the idea of the
consideration of extreme problems, where the poles of quadratic differen-
tials have a certain freedom (see [13]). In the frame of this idea, G. Bakhtina
formulated a number of problems with the so-called “free poles” on the unit
circle (see, e.g., [6]).

The works of V. Dubinin was an important step on this way. He proposed
several methods, including the method of piecewise separating transforma-
tion, which allowed him to solve a number of extreme problems for any
multiconnected domains (see, e.g., [2,7,8]). Now, these results are used
even in studies of the holomorphic dynamics.

In the last decade, the method of “controlling functionals” was developed
and used in the solution of many extreme problems for the so-called “ray
systems of points” (see, e.g., [1-5,14-18]).

Let N and R be the sets of natural and real numbers, respectively, C be
the plane of complex numbers, C = C| J{o0} be its one-point compactifi-
cation, and R* = (0, o).

Let us also fix some numbers n, m, d € N.

The system of points A, = {arp € C: k=1,n, p=1,m} is called an
(n,m)-ray system of points, if for all k = 1,n, the following relations hold:

0 <lap1| <...<|agm| < oo;
argay1 = argags = ... = argag,, =: O;
0=01<by<...<0, <0O,41:=2m.

For such systems of points consider the following quantities:

1
ak:;(ek—l-l_ak)? k:17n7

n
Qpt1 = 01, Opt1 = 01, Z ap = 2.
k=1

For m =1 and k = 1,n we get an n-ray system of points (see [1-5,14-18]).
If the conditions oy = %, k = 1,n are satisfied, then the system of points
Ap,m is called equiangular.

For any (n, m)-equiangular ray system of points A, », = {ayp}, we define
the following “controlling” functional

n m
M (Anm) = [ TTTx (Jansl?) - lansl.
k=1p=1
where x(t) = 3 - (t+t71).
Define also the following system of angular domains:
27

2
Pk(An,m):{weC:?(k—1)<argw<%k}, k

Il
=
N
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For a fixed number R € R™, consider the unique branch of the multi-
branch analytic function

2e(w) = —i (ei;kwf. (1.1)

For each k = 1,n it realizes a one-sheet conformal mapping of the domain
Py, onto the right half-plane Rez > 0.
Let {b;};_; < C be the following set of points:

by=R-é n(2k— 1) k=1,n
It easily follows from relations (1.1) that
2k (b)) =1, 2k (Qkg1,p) = 1Sm—p+1, 2k (Qkp) = PSmtps
s; >0, j=1,m, s; <0, j=m+1,2m,
51> 89> ...> Som, Ant1p = Q1 p, k=1,n, p=1,m.

For each k = 1,n and for a collection of points {is; }?Zl on the imaginary
axis satisfying the inequalities

s; >0, j=1,m, s; <0, j=m+1,2m, §1> 82> ...> Sp,

we now consider the set of circles F;? such that the points —1,1,4s; € I';.
For each k = 1,n denote

Q) ._ {z zeFk argz<7r}, 7 =1m,
7 {z: zel“;?, —m<argz <0}, j=m+12m.
Let also {L }] k= 1,n, be a collection of curves such that
L < 7, bpe LY, j=T12m,
akp € L,(q]i:;,ll, ajp € Lfnlp, p=1,m,

2k L( — {z: zngk) <largz| <5}, j=1,2m.
Consider the following mapping
z—1

(=) = z+1

For each k = 1,n this mapping is one-sheet and conformal and maps the

domains Qg-k)

(1.2)

onto the system of rays

{C: argC:ﬁj}a ]:1’ 2ma
<P <B2<...<Pom,



94 A. Targonskii

respectively.
Denote it by Aoy, 2441, where
Vj,tEAQmﬂd-i—l, ]:15 va t= 1) 2d+1a
so that

C(2k(arp)) =Vmapdi,

C(ze-1(anp)) =vpas1,
20 ‘= Zn,

p=1m.

Rotating (if necessary) the obtained ray system by some angle one can
assume that 81 = 0. On each ray of the obtained ray system, we choose
2d + 1 points and get the (2m, 2d + 1)-ray system of points.

For each k = 1,n consider the systems of preimages of the composition
¢ o zx of mappings (1.1) and (1.2) and denote the corresponding systems of
points by

Dy ={d) e 1 j =T 2m, s =T.d},

The system of points

ADn,m,d = U D(nid U Anm
k=1

is called mosaic.
For any mosaic system of points AD,, ,,, 4, consider the following “con-
trolling” functional

4 (ADy ) * ﬁ(ﬂ’“’”’ JHlHl‘ >

For the images of any mosaic system AD,, ,, 4 under mapping (1.1), con-

sider the system of points {w;‘t}jfl 2td:+11, that are the second-order poles of

the following quadratic differential.
(Z _ 1)2m—2 y
(Z + 1)6m+2

) ((z+ 1)2™ + (z — 1)2m) ™ L (1.3)

(((z +1)m —i(z — 1)) 4 (2 4+ D) iz - 1)m)4d*2)2

Q(z)d? = -

We note that the main results of the theory of quadratic differentials can
be found in [11].
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In this case, we introduce a (2m, 2d + 1)-ray system of points Agy, 24+1,
whose points are the poles of the quadratic differential

C2m—2 . (1 + C2m)4d
<(1 _ Z.Cm)4d+2 +(1+ Z4(,,1)4d+2)2

Q(Q)d¢* = — Ld¢?. (1.4)

Let {Bj(ks)} be any collection of pairwise non-overlapping domains such
that

k k k
e Bt B < P, (1.5)

where k =1,n, j =1,2m, s = 1,d.

Let D < C be any open set and a € D a point. By D(a) we denote a
connected component of D containing the point a. For an arbitrary system
of points

Apm ={agpeC:k=1,n,p=1,m} <D

denote by Dy (as,) the connected component of the set D (as,) N Py con-
taining the point as,, for k =1,n, s = k,k + 1 and ant1,p := a1,

We say that the open set D, A, ,,, © D satisfies the condition of disjoint-
ness relatively to the system of points A, ,,,, if the following relation holds
on all angles Pj.

[Dy(ak,t) N Dy(agu)] v [Dr(ars1,6) 0 Di(arps1,u)] v

U [Dg(ak,t) 0 Di(agt1,p)] v (1.6)
v |:B]( s) N Dk(ak p)} U |:B§ s) N Dk(ak_;_l’p)} =,

k=T1n,p t,u=1Tm,t#u, j=1,2m,s=1,dand api1yp = aip.
The object of studies in the present paper is the following problem.

Problem 1.1. Let n, m, de N, Re RT, ¢+, kK > 0, n > 2. Determine the
maximum of the quantity

,}j(ﬁr (Bkps Qk,p) - HHT ( s js>>

=1 j=1s=1

for any mosaic system of points AD,, ,,, 4, where {B } is any collection of
pairwise non-overlapping domains that satisfies (1. 5) and D is an open set
satisfing (1.6).

A similar problem for non-overlapping domains was solved in [18|.
It is clear that for kK = 0 these problems are generalizations of the cor-
responding problems considered in [1,4].
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2. AUXILIARY RESULT

Lemma 2.1. Let k,m, g€ N,

{z:zeF?,OSargzgﬂ}, J , 1M,
OF =

J -
{z:zefk,—ﬁgargz<0}, m+ 1, 2m.

Then for any system of points {w;;, t}g 141 such that

(2.1)

wjt € Qj, j=1,2m,
t

™
0 < fargw;| < largwjo| < largwjq| < 5, t=1,q,

2

and any collection of pairwise non-overlapping domains {G]t}J 1t=1 for
wit € Gt < C the following identity holds:

q
HT JthJt :22mq HH ’W3t+1| r(Aj, v ))

t=1 j=1t=1

2m

—_

j:
where

vie = Clwie), J=1,2m,
C: Gj,t - Aj,t7 t= 17q7
and the mapping ((z) is given by the relation (1.2).

Proof. The function (1.2) realizes an automorphism of the Complex plane

being one-sheet and conformal and maps the system of points {w;, t} = 1 =1

satisfying (2.1) onto the (2m, ¢)-ray system of points Aoy, 4 = {V],t}izllqtzl.

It is clear that ( (1) = 0 and ¢ (—1) = oo. Therefore

7’( j,tij,t): #7’( j,tvyj,t)a J= 17 2m7 tzlvqa
whence we get the following relations
1 2m q
2
j=1t=1 j=1t=1

3. MAIN RESULT
Theorem 3.1. Let n, m, d € N, R € R", n > 2. Then for any mo-
saic system of points ADy, , 4, any collection of pairwise non-overlapping
domains {BJ(I?} satisfying condition (1.5), and any open set D satisfying
condition (1.6), the following inequality holds:
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m 2m d 2\/@ mn(1+2d)
[T(ITr Beason)- THTTHER D) < (gar)

k=1 p=1 j=1s=1
2m 2d+1
X ADnmd (H 1_[ ‘w t—f—l’) M2 A2m2d+1)
7j=1 t=1
2m,2d+1

where the points {w;t}j:17t:1 are the second-order poles of the quadratic
differential (1.3), and the points of the (2m, 2d + 1)-ray system Agy, 2441
are the poles of the quadratic differential (1.4).

The equality is achieved if the points of the mosaic system ADy, p, 4 and

the domains of the system of pairwise non-overlapping domains {Bk,p, Bj(-? },

m
D = |J U By are, respectively, the second-order poles and the circular

k=1p=1
domains of the quadratic differential
( ) 5 wn—Z
Qw)dw” = —————
(71 (w))"™
m— m m 4d 3.1
) T3 w) - (Y37 (w) + 13" (w)) w, Y

((T;n(w) — TP (w) T (TP (w) + i“rgn(w))4d+2)2

where T1(w) = % +1, To(w) = 7]?%7 -1

Proof. Firstly, the condition of disjointness implies that cap C\D > 0, the
set D has the generalized Green function
9D(a) (Za a)a z € D(a)a
gp(z,a) =40, z € C\D(a),
gllm 9D(a) (Ca a)a Ce D(a)7 z€ &D(a),

relatively to the point a € D, and gp(q)(2,a) is the Green function of the
domain D(a) relatively to the point a € D(a).
Further, we will use methods from works [1,2,8]. Let

Ey=C\D, E(agp,t) ={weC: |w—ag,| <t},

k=1,n,p=1,m,n, m> 2, te R,. For sufficiently small ¢ > 0 consider
a condenser

C(tv Da An,m) = {E()’ El}’

where
m

n
= U U #laep0

k=1 p:
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The capacity of the condenser C (¢, D, A, ) is introduced in [2,8] as the
quantity

capC (t, D, Ap ) = infff [(G)? + (G;)z] dxdy,

where the infimum is taken over all continuous functions G = G(z) having
the Lipschitz property in C and G|g, =0, G|g, = 1.
As the condenser modulus we consider the quantity

|C| = [capC] .
From [9, Theorem 1| we get
1 1 1
where
M(Dv An,m) =
1 1 n m
=5 a3 [Z Z log (D, ay,p) + Z 9D(Ckp, g n) |- (3.3)
k=1p=1 k#q,
p#h
Let zp := 2, and
(k) o E—=T1
Wntp,d+1 *= Fk (arp) ) 1
k—1
W,(n,p)+17d+1 = Zk-1 (ak,p) , p=1,m,
k k .
w](-78) = zk(cis)), j=1,2m,
0
o‘)1(%)—}2—‘,-1,d—‘,—l = Zn (an:p)7 s=1,d

For an arbitrary domain A € C we put
(A :={weC:weA}.
Let also Qgﬂ_ denotes the connected component of the set

2k (D ﬂ?k) U (Zk (D ﬂpk))*

p,d+1

containing the point wq(:ip dy1s and let Qq(s:;ll 441 De the connected com-
ponent of the set

Zk—1 (D M ?k—l) U (Zk—l (D (@) ?k’—l))*

containing the point wr(::;ll g1 With k=T1,n, p=1,m, Py := P,,.
The pair of domains ngzrp, d+1 and Qgﬁ:ﬁrl’ 441 is aresult of the piecewise

separating transformation of the open set D relatively to the family of
angles {Py_1, Py}, {zx—1, 2} at the point axp, k =1,n, p=1,m.
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Simlarly, for each k = T,n, j = 1, 2m, s = 1,d denote by Q") and
Q) the result of the piecewise separating transformation BY

7,2d—s+2 7,8
tively to the families Py, z; at the point cg-i), which contains, respectively,

the points wj(ﬁ), wj(kQ) d—sqo- 1t is clear that Qékt) are, in general, multicon-
nected domains, k =1,n, j=1,2m, t=1, 2d + 1.

Now (1.1) implies the following asymptotic expressions:

rela-

n_g

1 n 2

a(t) = alany)| ~ g g fars|T v i)

(3.4)

W — A p, weP;, k=1,n, p=1,m, t=Fk—1,k.
Consider the condensers
k k
Ci(t, D, Anm) = (", EDY),
where
- - *

ER = ¢, (Es 0 Pi) v [ (Bs " Pr)] ™,
k=1,n,s=0,1, and {Pg},_; is the system of angles corresponding to
the system of points A . It follows that the condenser C (¢, D, Ay m)
corresponds to a set of condensers {C’k (t, D, An,m)}Zﬂ under a piecewise

separating transformation relatively to the angles { P}, _, and the functions
{zk}p_;. Then, due to the results from [2,9], we obtain that

1 n
capC (t,D, Apm) = 5 Z cap Cy, (t, D, Apm) - (3.5)
k=1
Hence
n -1
C (6, D, Anm) | < 2( ] 1 (1D, Ann) |71) (3.6)
k=1

Formula (3.2), as t — 0, gives the asymptotics of the absolute values of
the condenser C (t, D, Ay, ) and M (D, A, 1) is called the modulus of the
set D relatively to the system of points A, p,.

Using formulae (3.4) and the fact that the set D satisfies the condition
of disjointness relatively to the system of points A, ,,, we get a similar
asymptotic representations Cy, (t, D, Ay, ), k = 1,n, for condensers:

1
|Ck (t, D, Apm) | = T log n + My, (D, Apm) + o(1), t—0, (3.7)
where
(k) (k)
1 Ui r (Qm—l—p,d—‘rl’ wm+p,d+l)
My, (D, An,m) = S7m2 leog . N 21
P= RE2° ‘ak,p




100 A. Targonskii

(k—1) (k—1)
n r (Qm—p—i-l,d—l-l’ wm—p—l—l,d—l—l
+ Z log o)
1 n 27
p—l Rig . 5 . ‘ak’p

By means of (3.7), we obtain

log %

4m 4mm 2 1 \2
= 7T1_<7r1) My (D, Apm) + o0 ( 1) , t—0.
log ¢ log ¢ log %

Further, relation (3.8) implies that

-1
_ 4mm 4dtm 1
|Ck (tvaAn,m)| f= ’<1+ gle(DvAn,m)—'_O( 1))
t

Sk (D, Agn)] 7 =
- 4 4 2 1 N2 (3.9)
mnm mTm
= @ - (@> .]gle (D,An,m)+0<(log1) ) , t—0.

t

In turn, relation (3.9) leads to the following asymptotic representation:

n —1
(Z Ci <t,D,An,m>|1) =
k=1

-1

log 1 4 = 1

_ %% (q_ Wml . Mk(DyAn)+0< 1) (3.10)
d7nm nlogs /= log ¢

B log%

1 n
+ DMy (D, Apm) +0(1), t— 0.
k=1

4dmnm

Inequalities (3.5) and (3.6) and relations (3.2) and (3.10) imply that

1 1 1
. log-+ M(D, Apm 1) <
5y o108+ M(D, Apgn) +0(1) o)
log% 2 < :
< — - My (D, Ay 1).
27mm+n2 kgl k( m) +o(1)
It follows from relation (3.11) that
2 n
M(D, Ann) < =5 - My (D, Apm) ast — 0. (3.12)

k=1
Then formulae (3.3), (3.7) and (3.12) lead to the relation
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1 n m

o m2n2 . [Z Z logr(D, axp) + Z gD(ak,paaq,h)} <

k=1p=1 (k,p)#(q,h)
(k) (k)
< 1 i i 1 " <Qm+p7d+1’wm+p,d+1)
< — . og n
47rm?2n? P 1 n ‘a 71
RS 2 k.p
(k—1) (k—1) )

n r((hn—p+1d+lﬁum—p+Ld+1
IPNL |
k:lp:l n . ‘ak’p 2

=
*F
Do

and we finally get

Iﬁ[I_IT(l)?akJJ <

k=1p=1
2\ 2 1-5
<(= RLHH) ‘ 3.13
<n) 2 Ak,p X (3.13)

x H H (r(Qgr]j?i-p,d-Q—l’Wﬁr]:-)ﬁ-p,d—i-l) 'T(val;:;zl—l,d—i-l’wﬁrlf:;—)i-l,d—&-l))

(k)

As a result of the separating transformation of the domains B;

tively to the families Py, 2, at the point c§ S),
( B (k)) _

7,87 JS

_ 2R3 {r (Q(k> w(k)) _T<Q(k) ) )}é (3.14)

’ (k)51 3,57 73,s 5, 2d—s+22 Y], 2d—s+2
n|c:
j?s

N[

rela-

we get the relations

where k =1,n, j =1, 2m, s = 1,d.
Then relations (3.13) and (3.14) yield

{1({Tr o [T (242)
o\ mn(1+2d) mn n o 2m 2d+1
< M(ADn,m,d)'<n> ‘ e H(H [1r@f.« )

k=1 j=1 t=1

D=

Using Lemma 2.1 and the previous inequality, we get

H (Hr (D, agp) HH ( e C )) éM(ADN,m,d)'<i>mn(l+2d)x

j=1ls=1
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[N

1+2d . ( ﬁ ﬁl (’w —1—1) : <A( ! (k)>)> -
14 22m(2d+1) i A N
NI A n [ 2m 2d+1
_ (n) R™- 0420 (AD, ) H (H H ‘th + 1‘)
k=1 \j=1 t=1

n 2m 2d+1 %
T -()) o1

k=1 \j=1 t=1
where at each k = 1,n

k k R —

I/](-,t) = C(wj(-7t)), j=1,2m,

¢: GV — A%, t=1,2d+ 1.

- . (k) 2’!’?7,7 2d+1 .

For each k = 1, n, the system of points {ujt } L 8 (2m, 2d+1)-ray
’ ]: 7t:

system of points.
Now by [2, Corollary 3.1.5] for each k = 1,n we have that

2m 2d+1 9 2m(2d+1)
IT11r ( v )< <m(2d+1)> M (Agmsdas) . (3.16)

j=1 t=1

The equality is achieved if the points {l/](? }32125:11

{ (kt) }j;nl 2td:+11 are, respectively, the poles and circular domains of the qua-

dratic differential (1.4).
From relation (3.15) with regard to (3.16), we obtain the relations

ﬁ(ﬁ (Brp, ap) - HH Bj(k;, ¢y ) < (ﬂ%)mnuﬂdz(

and the domains

k=1 p=1 j=1s=1
n m 2d+1 n
A-Dnmd H(H H ‘Wj + 1’) : ( (AQm 2d+1))5
k=1 j=1 t=1

The quadratic differential (1.3) can be obtained from the differential (1.4)
with the help of substitution (1.2). The quadratic differential (3.1) follows
from differential (1.3) with the help of the substitution
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FIGURE 3.1. The figures show the transformations used dur-
ing the proof of the theorem
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