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Abstract. The paper presents a method for fast calculating the electronic states in two-

dimensional quantum structures based on A
III

B
V
 nitrides. The method is based on the 

representation of electronic states in the form of a linear combination of bulk wave 

functions of materials, from which quantum structures are made. The parameters and 

criteria for the selection of bulk wave functions that provides fast convergence of the 

numerical procedures for calculating the eigenvalues of the quantum Hamiltonian have 

been considered. The results of the calculations have been given both for one polar 

InGaN/GaN quantum well and for a system of several quantum wells. Being based on the 

full band structure of A
III

B
V
 nitrides with a wurtzite-type crystal lattice, the proposed 

approach takes into account the states far from the center of the Brillouin zone, while 

preserving the computational efficiency of traditional methods of envelope function in 

approximating the effective mass. 
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1. Introduction 

InGaN/GaN quantum wells were long used in 

optoelectronic devices as generators of visible radiation, 

mainly blue and green ones. The generation of red 

radiation in these systems was not available for a long 

time as caused by the large defectivity of InxGa1–xN 

layers for x > 0.3 when they are grown on typical GaN or 

sapphire substrates. To overcome this problem, scientific 

groups proposed several technological innovations, such 

as growing on pseudo-substrates [1–7] and using the 

buffer layers to compensate for mechanical strains during 

growth [8–15]. 

As a result, in recent years publications began to 

appear reporting the successful use of InGaN/GaN 

systems in LEDs with the wavelength 633 nm [16] and 

even 740 nm [17]. Generation of all three RGB main 

colors by using only nitrides opens new possibilities for 

micropixel display technologies. However, the quantum 

efficiency of InGaN/GaN LEDs in the green-red area of 

the visible spectrum is significantly lower as compared to 

blue LEDs. The reasons for this phenomenon cannot be 

explained only by defectiveness of the InxGa1–xN layers 

with a high In content. The physical mechanisms 

responsible for the drop in efficiency of InGaN/GaN  

 

LEDs are hidden in features of recombination and 

transport of charge carriers, which are difficult to be 

detected in a direct targeted experiment. That is why 

numerous modeling can provide answers to questions 

that are not available in experimental studies. However, 

such modeling is not trivial for several reasons. 

The first reason lies in the fundamental 

multiphysics of modeling, that is, the combination of an 

electrodynamic model with a quantum-mechanical one. 

The second reason is the need to use iterative algorithms 

of self-consistency of the electrodynamic and quantum-

mechanical models, since the results obtained in one of 

the models are the initial conditions for another. Usually, 

for InGaN/GaN quantum wells, it is implemented by 

combining the diffusion-drift model with the method of 

envelope functions for solving the Schrödinger equation 

[18]. In the simplest case, the method of envelope 

functions leads to the calculation of the eigenvalues of 

quantum systems described by the Hamiltonian in the 

effective mass approximation or its pk   generalization 

[19, 20], where the wave function of the quantum state is 

decomposed in the basis of the Bloch functions of the 

center of the Brillouin zone (or G-point) of materials 

from which the quantum systems are made. This  
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approach is the most effective in terms of the speed of 

finding a self-consistent solution, but it can be questioned 

regarding the physical relevance of the obtained results. 

One possible, more physically reasonable replacement 

for the method of envelope function can be the empirical 

method of strong coupling. The strong coupling method 

is currently the most widely used method for modeling 

the electron transport in InGaN/GaN structures [21–24]. 

Naturally, the modeling process requires more computing 

power and delays calculations, especially when it is used 

to find a self-consistent solution. 

In this paper, we propose to consider another 

alternative to the method of envelope functions, which is 

called the method of linear combination of bulk bands 

(LCBB) [25, 26]. In its original formulation, the method 

is based on the decomposition of the wave function of 

nanostructure in the full (not only the center of the 

Brillouin zone like to that in k·p approximation) basis of 

the Bloch functions of the materials from which the 

nanostructure is made. 

The Bloch functions themselves of bulk materials 

are obtained using the empirical pseudopotential method. 

In [27], the LCBB approach was considered in detail for 

the general type of 2D and 1D nanostructures, and 

general recommendations were given for choosing the 

basis of Bloch functions for decomposition of the wave 

function for nanostructures. The use of this approach to 

study electronic states and transport in Si, Ge, and GaAs 

nanostructures was also reported [28]. The purpose of 

this work is to identify the possibilities of the LCBB 

approach regarding the physical relevance and 

effectiveness of its application especially to polar 

InGaN/GaN quantum wells. 

2. Theoretical model 

By analogy with the linear combination of atomic 

orbitals, which is used in the strong coupling method, 

LCBB uses the representation of the quantum wave 

function in the form of a linear combination of the 

eigenstates of the bulk materials, from which the 

nanostructure is prepared. In our case, these materials 

were binary nitrides with a wurtzite-type crystal lattice. 

We used the empirical pseudopotential method to obtain 

eigen electronic states in bulk nitrides. In this work, we 

took into account only the local component of atomic 

pseudopotentials, which depends on the value of wave 

vector (k) according to the parametric relation: 

    




4

1

2
231 exp

i

iii bkbbkV ,     (1) 

where 40  (volume of GaN or InN unit cell). The 

numerical values for the parameters {b11, b21, …, b34}, 

which define the form of the pseudopotentials for each 

atom in the inverse space, were optimized by us to 

achieve the greatest correspondence to the latest 

experimental data and first-principles calculations for 

binary nitrides with a wurtzite-type crystal lattice.  

 

These target data were energies at the points of high 

symmetry of the Brillouin zone, effective masses, band 

gaps at the InN/GaN interface. Multi-objective optimiza-

tion was performed using a simplex-type algorithm [29]. 

This algorithm does not require numerical calculations of 

the gradients for the highly nonlinear optimization 

functional, which significantly speeds up the procedure 

for finding the global optimal value, effectively 

discarding local optima. During the optimization, we did 

not take into account spin-orbit interaction effects and 

deformation effects that make insignificant corrections to 

the structure of the valence bands of binary nitrides [30]. 

The resulting set of parameters is adduced in Table 1. 

In what follows, we will consider the LCBB 

formalism for 2D quantum well-type nanostructures. In 

these systems, the periodicity of the potential of the 

crystal lattice is violated only in one direction. In the 

future, we will call this direction the z-direction. This 

violation can be described by the potential U(z) that is the 

quantum confinement potential. As a rule, the function 

U(z) is obtained by self-consistent solution of the 

equations of the electronic transport model. 

Since the goal of this work was not to build a 

complete transport model, we used the empirical form of 

the quantum confinement potential, which reproduces the 

main features of InGaN/GaN quantum wells (band gaps 

at heterointerfaces, the presence of an electric 

polarization field). Under the above conditions, the one-

electron Schrödinger equation for the wave function 

 zr ,


  of the quantum state has the form 
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        (2) 

where H is the Hamiltonian of the quantum structure, 

E is the eigenvalue, and  zrU ,0


 is the periodic potential 

of  the crystal lattice.  According to the LCBB formalism,  
 

 

Table 1. Optimized parameters of atomic pseudopotentials. 

Parameters b11, b12, b13, b14 are given in Ry/(Å)3. 
 

 GaN InN 

 Ga N In N 

b11 –1.455816 –0.430305 –1.405991 0.294541 

b21 –0.272695 –0.241202 –0.234410 –0.343970 

b31 2.013207 3.669188 1.955968 2.286919 

b12 0.192748 –0.922755 0.219729 –0.848754 

b22 1.961085 0.762030 1.754019 0.581173 

b32 0.857372 0.983282 1.458801 0.674031 

b13 0.241016 0.170734 0.285917 0.144111 

b23 2.171686 1.506516 2.146941 1.047892 

b33 1.217690 0.867399 4.221378 0.920193 

b14 –0.003961 0.009662 0.156405 0.043072 

b24 3.010995 2.797614 3.377304 2.959492 

b34 11.04524 13.30637 11.47290 15.92229 
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the wave function   is represented as a superposition of 

Bloch functions  zkkn ,


 of bulk materials: 

   
 

 z

kkn

kkn
kknAzr

z

z

,,

,,

,,




 ,     (3) 

where kz is the component of wave vector in the direction 

of quantization,  yx kkk ,


 – wave vector in the plane 

perpendicular to the direction of quantization. 

Substituting (3) into (2) and taking into account  

the representation of each Bloch function as a product  

of a periodic function and a plane wave 

       ,exp,
,
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  the matrix 

elements of the Hamiltonian H in the basis of the Bloch 

functions takes the form 
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where  z
n

bulk kkE ,
)(


 is the eigenvalue of the energy 

corresponding to the Bloch function of the bulk material 

 zkkn ,


,  zkU  – Fourier image of the quantum 

confinement potential,    zzz kknGkkn
uu

 ,,
  – integral of 

the overlap between the periodic parts of bulk Bloch 

functions, Gz – component of the vector of the inversed 

lattice inherent to the bulk material, Lz – length of the 

nanostructure or the periodicity length related to the 

periodic boundary conditions imposed on the 

Schrödinger equation. Summation in equation (4) takes 

place over all numbers n′ of energy bands of bulk 

materials and components of wave vectors zk   belonging 

to the corresponding region in the Brillouin zone of bulk 

materials. The vector k


 enters (4) as a parameter and 

must belong to the first 2D Brillouin zone. According to 

the definition, the first 2D Brillouin zone is considered to 

be a region in the inverse space, in which two vectors k


 

and k 


 are arbitrary and satisfy the condition Gkk


  

for inverse lattice vectors such that  zGgG ,0


. 

A simple analysis shows that in the case of nitrides 

with a wurtzite-type crystal lattice, the entire set for G


 is 

limited to the following six vectors: )0,0,1(22,1 aG 


, 

 0,23,2124,3  aG


,  216,5 GGG


 , where 

a is the crystal lattice constant of the quantization plane. 

As can be seen, all the vectors have zero components in 

the z-direction. Therefore, it is obvious that the condition 

Gkk


  is fulfilled for all k


 belonging to the 

hexagon of the base of the Brillouin zone for bulk 

nitrides (Fig. 1). Diagonalization of the matrix (4) for 

each k


 of the 2D Brillouin zones gives a spectrum of  

 

 

(a) 

 

 

(b) 
 

Fig. 1. a) 2D Brillouin zone and kz interval of periodicity for 

polar InGaN/GaN quantum wells. b) Schematic view of 

quantum confinement potentials for electrons Ue(z) and holes 

Uh(z). Dashes show the form of potentials without account of 

the polarization effects in the well and barriers. 

 

 

energy eigenvalues, which can be interpreted as an 

energy band diagram for 2D nanostructures. That is, 

vector k


 can be considered a kind of “quantum number” 

that “numbers” of quantum states in 2D structures. 

As shown in [27], the set of kz values, by which 

summation in (4) is actually carried out, must satisfy the 

condition zzz Gkk   for all the components Gz that are 

included into the vectors of the inverse lattice 

 zGG ,0


 . Again, taking into account the symmetry of 

the inverse space for a wurtzite-type crystal lattice, it can 

be ascertained that cGz  2 , where c is the crystal 

lattice parameter in the polar z-direction. Therefore, the 

condition zzz Gkk   is fulfilled for all kz from the 

interval  cc  ; . With account of this condition, 

formation of a linear combination of eigenstates of bulk 

materials was performed as follows. First, we choose k


 

that belongs to the 2D Brillouin zone, and relate with it 

the system of vectors  izkk ,,


, where the points 

cNik
zkiz , ,  

zz kk NNi ;  were uniformly placed 

within the interval  cc  ; . The number 
zkN  will be 

referred to as the discretization number. For each  
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 izkk ,,


, we find eigenstates of bulk materials. Since 

formation of InGaN/GaN quantum well at the atomic 

level can be modeled using the random arrangement  

of In atoms in the GaN matrix, as the eigenenergy 

 z
n

bulk kkE ,
)(


 and Bloch functions  zkkn ,


, we used the 

corresponding values for GaN (i.e., we used 

approximation of one bulk material). 

Thus, the resulting Hamiltonian matrix (4) has the 

dimensionality   nk NN
z

12  , where Nn is the number of 

bulk zones that were included in the calculation. As for 

summation over the components inherent to the vector of 

the inverse lattice Gz for the bulk material, which is 

present in (4), then, just as it was assumed in the work 

[27], we limited ourselves to only three terms with 

ccGz  2,2,0 . Summation over the other Gz has 

almost no effect on the final result due to the rather rapid 

decrease of the Fourier image of the quantum 

confinement potential  zkU  for large kz. 

At the end of the overview of the theoretical model, 

we will dwell on one more question. One of the 

important features of polar InGaN/GaN quantum wells, 

which strongly affects the energy levels and the spatial 

distribution of wave functions, is the presence of 

polarization. The value of spontaneous polarization in 

quantum wells is defined by the difference between the 

constants of spontaneous polarization of the materials of 

the well itself and the barriers. 

Since the polarization constants in binary GaN and 

InN are very close, this enables to assume that the 

spontaneous polarization in InGaN/GaN quantum wells 

will be much lower than the piezoelectric one [31]. 

Therefore, in this work, by polarization we understood its 

piezoelectric component. In the InGaN/GaN structures, 

the piezoelectric response to the appearence of tensile 

deformation in the direction of the polar axis (which 

coincides with the z-direction in our case) can be taken 

into account by using the well-known relation [32]: 
















33

13
33312

C

C
eeP xxz  ,      (5) 

where Pz is the component of the piezoelectric pola-

rization vector in the z-direction, e31, e33 – components of 

the piezoelectric tensor, C13, C33 – components of the 

elasticity tensor, εxx – relative strain in the well plane, 

which is usually calculated from the difference  

between the crystal lattice parameters for GaN and 

InGaN InGaNInGaNGaN aaaxx  . The crystal lattice 

parameters, elastic and piezoelectric constants for  

InxGa1–xN were found by linear interpolation between the 

values for GaN and InN listed in Table 2. 

Since the value of the relative deformation εxx is 

negative for the well and positive for the barrier, the 

piezoelectric polarization vectors have opposite 

directions in the well and barriers. The potential of 

polarization field was obtained from 

 

Table 2. Crystal lattice parameters, elastic and piezoelectric 

constants for binary nitrides. 

 GaN InN 

a (Å) 3.189 [33] 3.544 [33] 

c (Å) 5.185 [33] 5.718 [33] 

C13 (GPa) 106 [34] 108 [35] 

C33 (GPa) 398 [34] 265 [35] 

e31 (С/m
2
) –0.44 [33] –0.59 [33] 

e33(С/m
2
) 0.75 [33] 1.14 [33] 
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where )()( , bwbw d  and )(,0 bwz  are the dielectric function, 

thickness, and coordinate of the center of the well (w) 

and the barrier (b), respectively. To take into account 

polarization effects, the potential (3), or rather its Fourier 

image, must be added to the quantum confinement 

potential in (1). 

Calculation of the Fourier image of polarization 

potential is actually the final stage in formation of the 

Hamiltonian matrix (4), after which we proceeded to its 

diagonalization. Diagonalization was carried out in the 

standard sequence: reducing the complex Hermitian 

matrix to a real tridiagonal matrix by means of unitary 

transformations; finding the eigenvalues of a tridiagonal 

matrix by using the bisection method; finding the 

eigenfunctions of the Hermitian matrix by using the 

inverse iteration method. 

3. Results and discussion 

The model described above was applied both to a single 

quantum well and to a system of five consecutive 

InGaN/GaN quantum wells. The five-well system is of 

particular practical interest for optoelectronics, since just 

this configuration of the active region is used in the vast 

majority of LEDs in the visible spectral region. 

To evaluate the effectiveness of the developed 

model, we used the simplest rectangular shape of a 

quantum well surrounded by two barriers (Fig. 1b). The 

parameters of this structure are the depth and thickness of 

the well and the thickness of the barriers. The depth of 

the well was defined by the content of indium x in the 

ternary compound InxGa1–xN and the ratio of band gaps 

at the boundary of the well and barrier. All calculations 

in this work were performed for x = 0.3 and the ratio of 

band gaps 30:70 vc EE  [36]. Under these condi-

tions, the well depth for electrons is 0.75 eV, and that for 

holes is 0.32 eV. The thickness of one well was assumed 

to be equal to four constants of the crystal lattice in the 

polar direction dw = 4c, which is approximately  

2.0 nm (insignificant deviations related with the 

dependence of c on the content of In in the InGaN well).  
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The thickness of the barriers was the same dbr = dw. Since 

the periodic boundary conditions were used in the 

derivation of the Hamiltonian matrix (4), the length of 

the considered nanostructure Lz (which is also the length 

of the periodicity) should be larger as compared to the 

thickness of the well with barriers in order to minimize 

the influence of boundary effects. When moving from 

direct to inverse space, the length Lz will be related to the 

discretization interval zk  by the ratio zz kL  2 . 

According to our choice of eigenstate vectors 

 ,cNk
zkz   therefore .2 cNL

zkz   The latter 

relation sets a lower boundary for the discretization 

numbers .
zkN  If the total thickness of the well and 

barriers dw + 2dbr = 12c, then the length of the periodicity 

should be at least twice as long, i.e. Lz ≈ 24с. This means 

that 
zkN  cannot be less than 12, and in the case of five 

consecutive wells 44
zkN . This is quite important, 

because 
zkN  defines the dimensionality of the 

Hamiltonian matrix (4), and therefore will affect the rate 

of its numerical diagonalization. 

The use of small discretization numbers that 

provide fast convergence of numerical diagonalization 

algorithms can lead to unreliable and sometimes contro-

versial results. Also, the discretization numbers given 

above are only theoretical limits. More accurate values 

should be obtained using test calculations. The results of 

these tests for the ground state of the conduction band are 

shown in Fig. 2. It can be seen from them that 31
zkN  

can be considered the most reasonable choice from the 

viewpoint of calculation error and calculation time.  

For a structure containing five wells separated by four 

barriers, the most optimal choice will be 93
zkN . All 

subsequent results were obtained with these 

discretization numbers. It should be noted that the 

calculation time of one quantum state in an isolated well 

on a dual-core Intel Core i3 (2.10 GHz) processor is 

approximately 4 s (for five wells, it is close to 38 s).  
 

 

 
 

Fig. 2. Dependence of the energy of ground state for electrons 

in a quantum well and the time of calculation of this state on the 

number of discretization 
zkN . 

This is quite close to the results typical of the simplified 

model of envelope functions. For states in the valence 

band, the time is several times longer. It is caused by the 

different number of bulk bands Nn, the overlap between 

which was taken into account for modeling the quantum 

states in the conduction band and valence one. For the 

states of conduction band, it was sufficient to include 

only two lowest bulk bands (Nn = 2). However, the 

complex structure of closely spaced valence bands of 

bulk nitrides requires the inclusion of a larger number of 

them in the calculation. The performed evaluations 

showed that it is optimal to include the five highest bulk 

bands (Nn = 5). As a result, for one isolated quantum 

well, the basis set contained 126 Bloch functions for 

modeling the electronic states and 315 Bloch functions 

for hole states. 

Fig. 3 shows the energy band diagram of an isolated 

InGaN/GaN well along characteristic lines in the 2D 

Brillouin zone. Since the described algorithm for building 

a basic set of functions for the ground state ( 0k


) abso-

lutely does not differ from the algorithm for an arbitrary 

other state ( 0k


) related to the 2D Brillouin zone, the 

time required for diagonalization of the matrix (4) does 

not depend on k


. It enables to effectively use the  
 
 

 
 

Fig. 3. Energy band diagram of an isolated InGaN/GaN 

quantum well along the characteristic M-G-K lines (shown in 

Fig. 1) in the 2D Brillouin zone. The red dashed lines show the 

positions of the first two energy bands in the absence of 

polarization in the well and barriers. The insets show the spatial 

distributions for the square of modulus corresponding to the 

wave functions for the ground state of electrons and holes in the 

plane along the direction of quantization. 
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Fig. 4. Comparison of band diagrams in the vicinity of the 

ground state (Г) of electrons for an isolated quantum well 

(dashed curve) and a structure of five consecutive InGaN/GaN 

wells. Indices 1–5 number the split energy levels in the five-

well structure and the spatial distributions of the wave functions 

at the Г point at each of the split levels in the plane along the 

quantization direction.  
 

 

proposed LCBB approach in those practical problems, 

where it is necessary to know the band diagram for a 

large number of wave vectors k


 lying throughout the 2D 

Brillouin zone, and not only in the vicinity of 0k


. In 

order to assess the influence of polarization effects on the 

shift of energy bands, the positions of the first two 

quantization bands in wells without taking polarization 

into account are indicated by dashed red lines in Fig. 3. 

The influence of polarization can be also clearly 

seen in the spatial distributions of the square of the 

modulus of the wave function for the ground state in the 

plane along the direction of quantization, which is shown 

in the insets of Fig. 3. These distributions once again 

confirm effect of reducing the overlap of wave functions 

for electrons and holes under the influence of 

polarization field, which is well-known in polar 

InGaN/GaN quantum wells. But, unlike calculations in 

the effective mass approximation, the LCBB formalism 

also takes into account the atomistic nature of the wave 

function, as a result of which the spatial distribution does 

not have a typical smooth shape with one maximum 

shifted from the center, but contains local oscillations 

related with the placement of atoms. 

Calculation for a sequence of five quantum wells 

revealed several interesting features. First, each quantum 

state in one isolated well splits into five states very close 

in energy (Fig. 4). For example, for the ground electronic 

 

state, the splitting is close to 0.03 eV. This effect also has 

the same origin as formation of minibands in the classical 

Kronig–Penny model for a particle in a periodic 

potential. Secondly, the spatial distributions of the wave 

functions of the split states are quite different from each 

other (Fig. 4). This result shows that one should 

distinguish between the wave functions in a system of 

coupled (and even weakly coupled) quantum wells and 

wave functions of quasi-isolated wells “stitched” with 

boundary conditions. The different overlap of the wave 

functions of electrons and holes will primarily be 

reflected on the optical and Coulomb matrix elements, 

and this directly affects the rates of radiative and non-

radiative recombination. 

Therefore, the currently known numerical estimates 

of the recombination coefficients and, in general, the 

mechanisms of the origin of non-trivial effects in 

InGaN/GaN LEDs, which were obtained for the model of 

one isolated well, should be revised with account of the 

above-mentioned splitting. 

4. Conclusions 

In this work, it has been shown that the formalism of the 

linear combination of bulk bands together with the 

effective pseudopotential method can be successfully 

used to calculate electronic states in 2D quantum 

structures based on A
III

B
V
 nitrides. In contrast to previous 

publications,  we  have presented the formalism of LCBB 

for materials with a wurtzite-type crystal lattice, i.e., with 

a non-cubic lattice symmetry. 

An algorithm for building the system of basis 

functions for representing the quantum state at an 

arbitrary k


 point of the 2D Brillouin zone has been 

proposed. Parameters and implementation of the 

developed approach has been realized for isolated polar 

InGaN/GaN quantum wells and their related systems. In 

both cases, the calculated efficiency of the approach 

closed in the traditional methods of envelope functions in 

the approximation of effective mass. 

This opens possibilities for use in transport and 

recombination problems, where it is necessary to know 

the band diagram actually over the entire 2D Brillouin 

zone, and not just near the ground state, as is the case in 

the method of envelope functions. In this work, we 

limited ourselves to systems of rectangular quantum 

wells, although applying the method to more complex 

systems does not cause difficulties. In addition, 

combining the LCBB formalism with the diffusion-drift 

approach to build a self-consistent model of InGaN/GaN 

quantum wells without an empirical form of the 

quantum-dimensional potential looks potentially 

interesting. 
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Метод швидкого розрахунку електронних станів у 2D квантових структурах на основі нітридів A
III

B
V
 

А.В. Сліпокуров, П.П. Корнійчук, А.В. Зіновчук 

Анотація. У роботі наведено метод швидкого розрахунку електронних станів у двовимірних квантових 

структурах на основі нітридів A
III

B
V
. Метод базується на представленні електронних станів у вигляді лінійної 

комбінації об’ємних хвильових функцій матеріалів, з яких виготовлені квантові структури. Розглянуто 

параметри та критерії відбору об’ємних хвильових функцій, які забезпечують швидку збіжність чисельних 

процедур розрахунку власних значень квантового гамільтоніану. Наведено результати розрахунків як для однієї 

полярної InGaN/GaN квантової ями, так і для системи з декількох квантових ям. Базуючись на повній зонній 

структурі A
III

B
V
 нітридів з кристалічною ґраткою типу вюртциту, пропонований підхід враховує стани, далекі 

від центра зони Бриллюена, водночас зберігаючи розрахункову ефективність традиційних методів огинаючих 

функцій у наближенні ефективної маси. 
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III

B
V
 нітриди, двовимірні квантові структури, електронні стани. 
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