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Spectrum of confined and interface phonons in 
complicated cylindrical nanoheterosystem placed into the  
plane quantum well in water 
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The energy spectra of all types of free vibrations existing in combined nanoheterosystem consisting of cylindrical 
semiconductor quantum dot, semiconductor quantum ring embedded into the quantum well placed in water are studied in 
the framework of dielectric continuum model. It is shown that depending on the boundary conditions for the potentials of 
polarization fields there are two types of interface phonon modes: top (bottom) surface optical (TSO) modes and side 
surface optical (SSO) modes. 
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1. Introduction 
 
The theory of quasiparticle (electron, hole, exciton) 

spectra in different combined nanoheterosystems have 
been rapidly developed recently [1, 2, 3]. It is caused by 
the unique perspectives of their utilization in the devices 
of modern semiconductor nanoelectronics [4]. 

Since, in ref. [1,2] the electron, hole and exciton 
spectra in opened combined nanoheterosystems were 
investigated in details. It was shown that the quasiparticle 
in such system is characterized by quasistationary states 
with the finite life time. Therefore the energy loss of 
quasiparticles (electrons, holes) can be caused not only by 
their recombination accompanied by the radiation of 
photons but also by the ability of quasiparticles to tunnel 
through the finite potential barrier with their further  
movement to the infinity. 

As far as we know, there is no the strait theory of 
interaction between quasiparticles and polarization fields 
in the combined nanoheterosystems yet. Nevertheless, 
such interaction, obviously, influences the energy spectra 
of quasiparticles, that is to be experimentally observed at 
the luminescence spectra. 

It is convenient to study the interaction between 
quasiparticles and phonons within the Green functions 
method using the Feinman diagram technique [5]. But, at 
first, it is necessary to obtain the energy spectra of 
quasiparticles and potentials of polarization fields arising 
in such systems. 

In ref. [3] there were investigated all types of phonon 
modes existing in the single combined nanoheterosystem 
consisting of semiconductor quantum dot, embedded into 
the semiconductor quantum wire. Here it was established 
for the first time that there are two types of interface 
phonon modes: top surface optical and side surface optical 
modes. 

 

 
 
In this paper we investigated in details the energy 

spectra of all types of free vibrations observed in the 
combined nanoheterosystem consisting of cylindrical 
semiconductor quantum dot (QD), semiconductor quantum 
ring embedded into the quantum well (QW), placed into 
the water. The research is performed within the dielectric 
continuum model, the results of which are in good 
correlation to the experimental data obtained for the 
simplest systems [6]. 

 
 
2. Theory of confined and interface phonon  
     spectra 
 
The combined nanoheterosystem (fig. 1) consisting of 

cylindrical semiconductor quantum dot with the height 0h  
and radius 0ρ  (HgS, "0"), semiconductor quantum ring 
with the thickness ∆  (CdS, "1"), embedded into the 
quantum well (HgS, "2"), placed into the dielectric 
medium (water, "3") is under research.  

The dielectric constants of every i th part of 
nanosystem is assumed as known 
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where i∞ε  - the high frequency dielectric constant, L iω  

and T iω  - the frequencies of longitudinal and transversal 
optical phonons of the respective bulk analogues of 
nanocrystals, 3 1,78ε =  [7]. 

 
 



Spectrum of confined and interface phonons in complicated cylindrical nanoheterosystem … 
 

1565

h 0

0

12

2

3 water

water3

HgS CdS HgS

0

 
Fig.1 Geometrical scheme of combined nanoheterosystem. 

 
 

According to the dielectric continuum model, the 
polarization field of the system is defined by the Maxwell 
equations for the media 

 
⎪
⎩

⎪
⎨

⎧

=∇
Φ−∇=

+==

0D
E

P4EE),r(D πωε
                          (2) 

where P  and D  - electric polarization and displacement, 
respectively, ( )Φ r  - potential of polarization field. From 
the system of equations (2) it is obtained the equation 
 

( , ) ( ) 0ε ω ∆Φ =r r ,   (3) 
 

the solutions of which determine the spectra of vibrations 
for the nanosystem. 
 

2.1. Confined phonons 
 
From the condition 

( , ) 0, ( ) 0ε ω = ∆Φ ≠r r ,  (4) 
 

it is obtained the spectrum of confined optical phonons. 
Analysis of eqs. (4) with eq.(1) proves that the frequencies 
of confined phonons are equal to the corresponding 
frequencies of confined phonons for the respective bulk 
crystals and, since, the energies of the confined phonons 
are 

L i L iΩ = ωh .   (5) 
 

Taking into the account the cylindrical symmetry of 
the problem, the polarization field of confined phonons of 
nanosystem i -th part is chosen in the form 
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where ( )mJ q⊥ρ , ( )mN q⊥ρ  - Bessel functions, || ,q q⊥  - 
axial and radial quasiwave numbers, m  - magnetic 
quantum number. The unknown coefficients ,i iA B , 

||( , )i
m q q⊥Φ  are obtained during the second quantization 

of the phonon field. 
 

 2.2. Interface phonons 
 
 The other solution of eq. (3) 
 

( , ) 0, ( ) 0ε ω ≠ ∆Φ =r r   (7) 
 

defines the spectrum and potential of polarization field for 
the interface phonons in nanosystem. 
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Fig.2 Dependences of TSO phonon energies ( TSOΩ ) on 

the  radial  quasiwave  number   ( k⊥ )   for   the  different  

                         values of  QD height ( 0h ). 
 

 
Due to the symmetry of the problem, the solution of 

Laplace’s equation (7) mustbe taken in the form 
 

( ) ( ) ( ) imF z e ϕΦ = ϕ ρr .                       (8) 
 

Depending on the fitting conditions for the functions 
( )ϕ ρ  and ( )F z  there are two types of interface phonon 

modes: top (bottom) surface optical (TSO) modes, whose 
amplitude decreases away from the  interface of quantum 
well 0 / 2z h= , and side surface optical (SSO) modes, 
whose amplitude decreases away from the side walls at 

0ρ = ρ  і 0ρ = ρ + ∆ . 
 
 
а) TSO  phonons 
 
It is obvious that for the TSO phonons ( )ϕ ρ  function 

is to describe the non decaying potential in the plane 
perpendicular to the axis of QD. Thus, 
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Using, further, the boundary conditions for the 
continuity of polarization potential and normal term of 
dielectric displacement at 0 / 2z h= , it is obtained the 
dispersion equation 
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Inserting eq.(1) into (10) one can otain the frequencies 

and finally the energies of  TSO phonons as functions of  
quasiwave number k⊥ . 

The unknown coefficients in eq.(9) are defined at the 
second quantization of   TSO phonons. 

 
b) SSO – phonons 
 
For SSO – modes ( )F z  function is to describe the 

non decaying potential along OZ axis and decaying ( )ϕ ρ  
in the perpendicular plane. Since, 
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Here, || ||( ), ( )m mI k K kρ ρ  - modified cylindrical 

Bessel functions of first and second kind. The boundary 
conditions for the continuity of polarization potential and 
normal term of dielectric displacement at 0ρ = ρ  and 

0ρ = ρ + ∆  allow to express the unknown coefficients 

|| || ||

(2) (1) (1), ,k k kB A B  through 
||

(0)
kA  and finally bring to the 

dispersion equation (the latter is not presented due to it is 
sophisticated) for the defining of SSO phonon frequencies 
as functions of axial quasiwave  number ||k . The 

coefficient 
||

(0)
kA  is also defined during the second 

quantization of  SSO  phonons field. 
 
 
3. Discussion  

 
Computer calculations of TSO and SSO phonon 

energies were performed for the combined 
nanoheterosystem (Fig. 1) with physical parameters 
presented in ref. [5].  The results are presented in figs.2-4. 
It is clear and the figures prove that the spectra of interface 
phonons depend on the geometrical parameters of 
nanoheterosystem and on the type of vibrations (SSO or 
TSO). But the energies of all modes of vibrations are 
always located between the energies of longitudinal and 
transversal phonons of the respective bulk crystals 

( T CdSΩ , L CdSΩ , T HgSΩ , L HgSΩ ) shown in the figures by 
dash lines. 

0.00 0.02 0.04
20

30

40

50

60

a
CdS
HgS

2∆

ΩT CdS

ΩL CdS

ΩT HgS

ΩL HgS

  

 

 

∆=5 aHgS

m=0
ρ0=0

k|| , π/aHgS

Ω
SS

O
,m

eV

 
 

0.00 0.02 0.04
20

30

40

50

60

b HgS ∆ρ0

HgS
CdS

k|| , π/aHgS

  

 

 

ρ0=10 aHgS

Ω
SS

O
,m

eV

 
 

0.00 0.02 0.04
20

30

40

50

60

c
ρ0

HgS
CdS
HgS

∆

k|| , π/aHgS

  

ρ0=100 aHgS

Ω
SS

O
,m

eV

 
 

Fig. 3. Dependences of SSO phonon energies ( SSOΩ ) on 

the axial quasiwave number ( ||k ) at 5 CdSa∆ = , 

0m =   for  the  different  values  of  QD   radius  ( 0ρ ):  

   0 0ρ =  (a), 0 10 HgSaρ =  (b), 0 100 HgSaρ =  (c). 

 
In Fig. 2 the dependence of TSO phonons energies on 

the radial quasiwave number k⊥  is presented for the 
different values of QD height ( 0h ). From the figure one 
can see two modes of TSO phonons with positive 
dispersion over the quasiwave number k⊥ . These two 
modes are caused by the existence of two interfaces 
HgS /water and CdS /water. We must note that the 
spectra of TSO phonon energies  almost do not depend on 
the radius of QD ( 0ρ ) and on the thickness of 
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semiconductor ring (∆ ). The increasing of QD height 
( 0h ) causes the small increasing of the dispersion over k⊥  
(Fig. 2). 
 In Fig. 3a,b,c there are presented the dependences 
of SSO phonon energies on the axial quasiwave number 

||k  at 5 CdSa∆ = , 0m =  for the three values of QD radius 

( 0ρ ): 0 0ρ =  (fig.3a), 0 10 HgSaρ =  (fig.3b), 

0 100 HgSaρ =  (fig.3c). 

At 0 0ρ =  there are two SSO modes with the 
opposite dispersions over the quasiwave  number ||k . It is 

clear because at 0 0ρ =  one obtains the spectrum of  SSO  
phonons in CdS  QD with radius 5 CdSa∆ = , embedded 
into HgS  QW, i.e., the system with one interface 

/CdS HgS  producing two side surface optical modes 
(Fig. 3a). The appearance of QD inside and increasing of 
its radius, causes the arising of two new SSO modes with 
different dispersions due to the new interface /HgS CdS  
between QD ( HgS ) and quantum ring ( CdS ) (fig.3d,c). 
From the figures one can see that at 0 100 HgSaρ >  there 
are almost no any changes in the behavior and energy 
values of SSO phonons. It is clear because at the big 0ρ  
magnitudes the curvature of QD side surface becomes so 
small that the cylindrical nanosystem is transformed into 
the plane film with the thickness 5 CdSa∆ = , embedded 
into the quantum well HgS . 
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Fig. 4. Dependences of SSO phonon energies ( SSOΩ ) on 

the axial quasiwave number ( ||k ) at 0 10 HgSaρ = , 

5 CdSa∆ =   for   the   different  values   of   magnetic  

       quantum number ( m ): 0m = , 1m = , 2m = . 
 

 
 
 
 
 

In Fig. 4 the evolution of SSO phonon spectrum at 
0 10 HgSaρ = , 5 CdSa∆ =  and different values of magnetic 

quantum number m : 0m = , 1m = , 2m =  is presented. 
Figure proves that the dispersion of energy over magnetic 
quantum number is rather small. The energies of modes 
with 1m >  are almost the same as the energies with 

1m = . There is the infinite number of SSO modes in the 
system under research because the magnetic quantum 
number has the infinite number of values. 

The energies of confined, SSO and TSO phonons 
obtained in the paper and their dispersion laws would be 
further used for the investigation of interaction between 
quasiparticles (electrons, holes, excitons) and these types 
of vibrations. 
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