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The spectra and lifetimes of an electron, a hole, and an exciton
in open cylindrical quantum dots (QDs) embedded into various
environments — a cylindrical quantum wire (QW) and a plane
quantum well which, in their turn, are located in a massive
three-dimensional medium — have been studied theoretically.
The relevant calculations were carried out in the framework of
the effective mass approximation and for a rectangular potential.
The analytical expression for the scattering matrix (S-matrix)
has been obtained. The real part of the S-matrix pole defines the
energy of a quasi-stationary state, while the imaginary one defines
its halfwidth and, accordingly, the lifetime of a quasiparticle in
this state. Numerical calculations of the spectra and lifetimes
of an electron, a hole, and an exciton were carried out for
nanoheterosystems composed on the basis of semiconductors β-
HgS and β-CdS.

1. Introduction

The progress in studying low-dimensional
semiconducting systems is connected with the
development of new technologies for growing
nanocrystals which allow various nanoheterosystems
(two-dimensional quantum wells, one-dimensional QWs,
zero-dimensional QDs) and their various combinations
to be fabricated [1, 2].

The overwhelming majority of the theoretical and
experimental researches of nanoheterosystems dealt with
the so-called “closed” systems, i.e. the systems where
the environment constitutes the maximal potential
barrier for quasiparticles (electrons, holes, excitons).
In such systems, the quasiparticle states with the
energy lower than the potential of the environment
are always stationary. The energy losses of the excited
quasiparticles (e.g., excitons) are possible only owing

to their interaction with one another or with other
quasiparticles or fields.

“Open” nanoheterosystems are of interest because
here, contrary to the “closed” ones, there always exists an
opportunity for quasiparticles to penetrate through the
potential barrier into the environment [3], which creates
an additional channel for the energy of quasiparticles,
which were excited in the quantum well, to relax. Such
a feature of the “open” systems may be important for
the creation of high-speed devices free from transit-time
effects.

The theory of quasi-stationary states of electrons and
holes in complex spherical QDs and cylindrical QWs
was developed on the basis of the S-matrix method
in works [4–6]. The calculations were carried on for
specific nanoheterosystems taken as examples; and the
dependences of the energy spectra and the lifetimes of
quasiparticles on the geometrical parameters of those
nanosystems and on the dynamic characteristics of
quasiparticles (e.g., the longitudinal quasi-momentum in
the case of a QW) were obtained.

Until now, there has been no theory of the quasi-
stationary states of electrons, holes, and excitons
in “open” combined nanoheterosystems altogether.
Therefore, it is interesting and important to investigate
the peculiarities in the behavior of quasi-stationary
states, at least in relatively simple systems. Such
a problem is solved using two spatial models as
examples:
1) a semiconducting QW which includes a QD separated
from the other part of the QW by two identical quantum
antidots (QADs) with potential barriers of finite heights
(Fig. 1);
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Fig. 1. Layout and the potentials V e, h of cylindrical QD 0 and
two cylindrical QADs 1 in QW 2 embedded into environment 3

2) a cylindrical QD and a cylindrical QAD located in a
plane quantum well which, in its turn, is positioned in a
massive three-dimensional environment (Fig. 2).

2. The Hamiltonian and the S-matrix of an
Electron (Hole)

2.1. A compound cylindrical quantum wire with
an “open” quantum dot

Consider a compound semiconducting QW which
contains a QD surrounded by two identical QADs. The
radii of the nanowire, the QD and both the QADs are
equal to ρ0; the heights of the QD and the QADs are h0

and h1, respectively (Fig. 1). According to the reasons of
symmetry, the origin of the cylindrical coordinate system
is convenient to be chosen at the center of the QD, with
the axis OZ being directed along the rotation axis of
the system. It is supposed that the QW and the QD are
made of materials with identical physical characteristics
(effective masses, dielectric permittivities), while the
material of both the QADs has different, in general,
characteristics. The entire compound QW is embedded
into the environment which constitutes the infinite
potential barrier for any quasiparticle presenting in this
system.

Owing to the finite height and width of the potential
barriers of both QADs, the QW is an “open” quasi-one-
dimensional system, so that quasiparticles can penetrate
through the potential barriers, and their states are quasi-
stationary with certain finite lifetimes.

The geometrical dimensions of the nanoheterosystem’s
components are such that the approximation of effective
masses is valid for an electron (hole). So, the effective
masses of an electron (e) and a hole (h) are considered
known and equal to their corresponding values in
massive analogues of nanocrystals:

µe, h (z) =





µe, h
0 in QD,

µe, h
1 in QAD,

µe, h
0 in QW.

(1)

We also suppose that the lattice constants (a0, a1)
of the well (subscript 0) and barrier (subscript 1)
materials are very close by value. Considering the
nanosystem composed on the basis of β-HgS or β-
CdS semiconductors (such a nanosystem will be studied
below), we note that the lattice constants in it are such
that (a1 − a0)/a0 ≤ 1% (see the table). Therefore,
the interfaces between subsystems are abrupt enough,
which allows us to use the approximation of rectangular
potential energies for an electron and a hole:

V e, h (ρ, ϕ, z) =




−V e, h

0 in QD,

−V e, h
1 in QAD,

−V e, h
0 in QW.

(2)

where V e,h
0,1 is the potential energy of an electron or a hole

in the corresponding environment reckoned from the
vacuum level. At ρ > ρ0, V e(ρ, ϕ, z) = V h(ρ, ϕ, z) = ∞.

Since the theories of the quasi-stationary spectra of
an electron and a hole in the investigated system are
equivalent, we present the further calculations for an
electron, temporarily omitting the superscript e.
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Fig. 2. Layout and the potentials V e, h of cylindrical QD 0 and cylindrical QAD 1 in quantum well 2 embedded into environment 3

To study the electron quantum states, it is necessary
to solve the Schrödinger equation

Ĥψ(~r) = Eψ(~r) (3)

with the Hamiltonian

Ĥ = −~
2

2
~∇ 1

µ(z)
~∇+ U(ρ, ϕ, z). (4)

According to the symmetry of the problem, it is
convenient to seek the wave function ψ(~r) in the form [7]

Ψnρ m(~r) =
(−πρ2

0Jm−1(xnρm)Jm+1(xnρm)
)−1/2×

×Jm(
xnρm

ρ0
ρ)eimϕϕ(z), (5)

where m = 0,±1,±2 . . . is the magnetic quantum
number, Jm(x) is the Bessel function of an integer order,
xnρm are the zeros of the Bessel function, and nρ is the
radial quantum number that defines the serial number
of the zero of the Bessel function at fixed m.

After having substituted solution (5) into the
Schrödinger equation (3), the variables can be separated,
and the equation for the z-th component of the wave
function reads

∂2

∂z2
ϕ(z) + ϕ(z)

[
2µ(z)
~2

(E − V (ρ, ϕ, z))− x2
nρm

ρ2
0

]
= 0.

(6)

Since the potential energy of an electron is symmetric
in the z variable, Eq. (6) is invariant with respect to
the inversion transformation z → −z. It allows z to be
confined to the interval of variation from 0 to ∞. The
solutions of Eq. (6) are separated into even (+) and odd
(−) ones [8]:
ϕ± (z) =

=





ϕ0(z) = A±
(
eik0z ± e−ik0z

)
, 0 < z ≤ z1,

ϕ1(z) = B±
(
e−k1z + S±1 ek1z

)
, z1 ≤ z ≤ z2,

ϕ2(z) = C±
(
e−ik0z + S±eik0z

)
, z2 ≤ z < ∞.

(7)

Here, k2
0 = 2µ0/~2E − x2

nρm/ρ2
0, k2

1 = 2µ1/~2 (U − E)+
+x2

nρm/ρ2
0, U = V0−V1, and S± is the scattering matrix

(S-matrix). The energy is reckoned “upwards” from the
bottom of the potential well (environment “0”).

Further, using the continuity conditions for the wave
function and the probability density current at all the
medium interfaces



ϕ0(z)|z=z1 = ϕ1(z)|z=z1 ,

ϕ1(z)|z=z2 = ϕ2(z)|z=z2 ,

1
µ0

ϕ′0(z)|z=z1 = 1
µ1

ϕ′1(z)|z=z1 ,

1
µ1

ϕ′1(z)|z=z2 = 1
µ0

ϕ′2(z)|z=z2

(8)

and the normalization condition for the wave
function
∞∫

0

ϕ∗±k0
(z) ϕ±k′0 (z) dz = δ (k0 − k′0) , (9)
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we obtain the analytical expressions for all the
coefficients A±, B±, and C±. We omit the
cumbersome analytical expressions for these coefficients
and will not consider the features of the wave

functions of quasi-stationary states of an electron
and a hole. Instead, we confine ourselves to the
analysis and calculation of the S-matrix which looks
like

S± =
S±1 (µ0k1 + iµ1k0) exp[(k1 − ik0)z2]− (µ0k1 − iµ1k0) exp[−(k1 + ik0)z2]
(µ0k1 + iµ1k0) exp[−(k1 − ik0)z2]− S1(µ0k1 − iµ1k0) exp[(k1 + ik0)z2]

, (10)

where

S±1 =
exp(−2k1z1)

[
k1µ0

{
cos(k0z1)
sin(k0z1)

}
∓ k0µ1

{
sin(k0z1)
cos(k0z1)

}]

k1µ0

{
cos(k0z1)
sin(k0z1)

}
± k0µ1

{
sin(k0z1)
cos(k0z1)

} . (11)

According to the general theory [3], the real parts of
the S-matrix poles in the complex plane of energies

Ẽnz nρ m = Enz nρ m − iΓnz nρ m

/
2 (12)

define the energies of the quasi-stationary states
(Enznρm), while the relevant imaginary parts their
halfwidths (Γnznρm). The quantum number nz numbers
the poles of the S-matrix, provided the quantum
numbers nρ and m are fixed. The level halfwidth is
connected to the electron (hole) lifetime in the state
|nznρm〉 by the relationship

τp =
~
Γp

(p = nznρ m). (13)

Thus, formulae (10)—(13) determine the energy
spectrum and the lifetimes of an electron and a hole in
the quasi-stationary states which are formed in a quasi-
one-dimensional “open” cylindrical QD embedded into a
cylindrical QW.

2.2. A plane quantum well with a quasi-plane
cylindrical quantum dot

Consider a compound semiconducting quantum well
which contains a cylindrical QD surrounded by a
cylindrical QAD. The radii of the QD and QAD
are, respectively, ρ0 and ρ1, and the heights of the
dot and antidot are equal to h0 both (Fig. 2).
The origin of the cylindrical coordinate system is
selected at the center of the QD, with the axis
OZ being directed along the rotation axis of the
system.

Owing to the finite height and width of the
potential barrier of the QAD, the quantum well is a

quasi-plane “open” system, so that quasiparticles can
penetrate through the potential barriers, and their
states are quasi-stationary and possess certain finite
lifetimes.

It is adopted that all the components of the
nanosystem obey the same geometrical and physical
conditions, as in the previous case. Therefore, the
effective masses and the potential energies of an electron
and a hole can be assigned in the form

µe, h (ρ) =





µe, h
0 in QD,

µe, h
1 in QAD,

µe, h
0 in quantum well,

(14)

V e, h (ρ, ϕ, z) =




−V e, h

0 in QD,

−V e, h
1 in QAD,

−V e, h
0 in quantum well.

(15)

where V e,h
0,1 is the potential energy of an electron or a

hole in a corresponding environment reckoned from the
vacuum level. At |z| > h0/2, V e(ρ, ϕ, z) = V h(ρ, ϕ, z) =
∞. According to the symmetry of the problem, it is
convenient to seek for a solution of Eq. (3) in the
form

ψnz (~r) = R(ρ)eimϕ

√
2
h0

{
cos πnz

h0
z, nz = 1, 3, ... ,

sin πnz

h0
z, nz = 2, 4, ... ,

(16)

where nz is the axial quantum number.
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The substitution of function (16) into the
Schrödinger equation (3) gives the equation for the
radial wave function R(ρ):
[

∂2

∂ρ2
+

1
ρ

∂

∂ρ
− m2

ρ2
+

2µ(ρ)
~2

(E − V (ρ, ϕ, z))− π2n2
z

h2
0

]
×

×R(ρ) = 0, (17)

the solutions of which are the linear combinations of the
Hankel functions:

Rnz m(ρ) =

=





R
(0)
nz m(ρ) = A

(0)
m [H−

m(k0ρ) + H+
m(k0ρ)],

ρ < ρ0

R
(1)
nz m(ρ) = A

(1)
m

[
H−

m(k1ρ) + S1
nz m(E)H+

m(k1ρ)
]
,

ρ0 ≤ ρ ≤ ρ1

R
(2)
nz m(ρ) = A

(2)
m

[
H−

m(k0ρ) + Snz m(E)H+
m(k0ρ)

]
,

ρ > ρ1.

(18)

Here, k2
0 = 2µ0/(~2E) − π2n2

z/h2
0, k2

1 =
2µ1/[~2 (U − E)] + π2n2

z/h2
0, U = V0 − V1, and Snzm

is the scattering matrix (S-matrix). The energy is
reckoned “upwards” from the bottom of the potential
well (environment “0”).

Further, using the continuity conditions of the wave
function and the probability density current at all the
medium interfaces





R
(0)
nz m(ρ)

∣∣∣
ρ=ρ0

= R
(1)
nz m(ρ)

∣∣∣
ρ=ρ0

,

R
(1)
nz m(ρ)

∣∣∣
ρ=ρ1

= R
(2)
nz m(ρ)

∣∣∣
ρ=ρ1

,

1
µ0

R′nz m
(0)(ρ)

∣∣
ρ=ρ0

= 1
µ1

R′nz m
(1)(ρ)

∣∣
ρ=ρ0

,

1
µ1

R′nz m
(1)(ρ)

∣∣
ρ=ρ1

= 1
µ0

R′nz m
(2)(ρ)

∣∣
ρ=ρ1

(19)

and the normalization condition for the wave function

∞∫

0

R∗nz m k0
(ρ) Rnz m k′0

(ρ) ρ dρ = δ (k0 − k′0) , (20)

we obtain the analytical expressions for all the
coefficients A

(0)
m , A(1)

m , A(2)
m , and S1

nz m and the S-matrix.
In particular,

Snz nρ m =

µ0k1

[
H−′

m (k1ρ1) + S1
nz nρ mH+′

m (k1ρ1)

H−
m(k1ρ1) + S1

nz nρ mH+
m(k1ρ1)

H−
m(k0ρ1)−H−′

m (k0ρ1)

]

k0µ1

[
H+′

m (k0ρ1)− µ0k1

µ1k0

H−′
m (k1ρ1) + S1

nz nρ mH+′
m (k1ρ1)

H−
m(k1ρ1) + S1

nz nρ mH+
m(k1ρ1)

H+
m(k0ρ1)

] , (21)

where

S1
nz nρ m =

µ1k0

[
J′m(k0ρ0)
Jm(k0ρ0)

H−
m(k1ρ0)−H−′

m (k1ρ0)
]

H+′
m (k1ρ0)− µ1k0

µ0k1

J′m(k0ρ0)
Jm(k0ρ0)

H+
m(k1ρ0)

. (22)

We note that the energies of quasi-stationary states
and their lifetimes are characterized, similarly to the
previously analyzed nanosystem, by three quantum
numbers (nz, nρ, and m). The quantum number nρ

numbers the poles of the S-matrix, provided the
quantum numbers nz and m are fixed.

Thus, formulae (12), (13), (21), and (22) determine
the energy spectrum and the lifetimes of an electron
and a hole in quasi-stationary states formed in a plane
quantum well with an “open” cylindrical QD.

3. Analysis and Discussion of Results

The specific calculations of the quasi-stationary state
energies and quasiparticle lifetimes were carried on for
two types of the systems made up on the basis of β-
HgS and β-CdS semiconductors and described above.
The parameters of these semiconductors are quoted in
the Table.

In Fig. 3, the dependences of the quasi-stationary
state energies of an electron and a hole E

e,h(I,II)
nznρm on the

barrier thickness in a QW (I) and a quantum well (II) at
the fixed height and radius of the QD are shown. From
the figure, one can see that the energy values in the

Crystal µe(µ0) µh(µ0) V e (eV) V h (eV) a (Å) ε Eg

CdS 0.2 0.7 3.8 6.3 5.818 5.5 2.5
HgS 0.036 0.044 5.15 5.65 5.851 11.36 0.5

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 12 1393
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Fig. 3. Dependences of E
e,h(I,II)
nznρm on the barrier thickness in a QD

(I ) and a quantum well (II ) at h0 = 2ρ0 = 8aHgS = const

Fig. 4. Dependences of τ
e(I,II)
nznρm and τ

h(I,II)
nznρm on the barrier

dimensions (∆1 = h1) at h0 = 2ρ0 = 8aHgS = const

Fig. 5. Dependences of τ
e(I,II)
110 on the potential barrier “height” U

quantum states Enznρm depend weakly on the
dimensions of the layers, which represent the barriers,
in both cases. It is clear, because the widening of the
barrier does not change the volume of the quantum well
of the system, and, hence, does not result in the variation
of the quantum state energy.

In both cases, the ground level corresponds to state
110; and the higher the dimension of the space where
the QD is open, the deeper the ground level (110) of a
quasiparticle in the potential well.

The arrangement sequences of the electron and hole
energy levels are identical for the same nanosystem, but
differ, except for the ground state (110), in different
nanosystems. For example, in the case of a QD located
in a QW, the first “swallowed” level is the level with
nz = 2, nρ = 1, and m = 0, and then the level with
nz = 1, nρ = 1, and m = 1, while the sequence of the
levels is inverse in the case of a QD located in a quantum
well.

In Fig. 4, the lifetime dependences of an electron
(τe(I,II)

nznρm) and a hole (τh(I,II)
nznρm ) on the barriers’ sizes

(∆1 = h1) at h0 = 2ρ0 = 8aHgS = const are
depicted. From the figure, one can see that, as the
widths of the potential barriers increase, the lifetimes of
an electron and a hole grow sharply (exponentially) for
both the types of the system, because the probability
of quasiparticle tunneling through a barrier decreases
abruptly in this case. We note that, owing to the
differences between the effective masses of an electron
and a hole and between the potential energies Ue and
Uh, the sequences of the lifetime arrangement for an
electron and a hole are different for different types
of systems. For example, τ

e(I)
110 > τ

e(II)
110 , but τ

h(I)
110 <

τ
h(II)
110 . The reason lies in that the reduction of U with
different rates reduces the lifetime of the quasiparticle
with respect to its escape from a QD into the spaces of
various dimensions

(
∂τ (II)

∂U > ∂τ (I)

∂U

)
, which is illustrated

in Fig. 5.
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Fig. 6. Dependences of E
n′zn′ρm′(I,II)

110 and τ
n′zn′ρm′(I,II)

110 on the barrier dimensions (∆1 = h1) at h0 = 2ρ0 = 8aHgS = const

In Fig. 6, we show the dependences of the exciton
excitation energies E

n′zn′ρm′(I,II)

1 1 0 and the exciton

lifetimes τ
n′zn′ρm′(I,II)

1 1 0 in the bottom part to the
spectrum on the barrier thickness. The dependences were
calculated by the formulae

E
n′zn′ρ m′ (I, II)
nz nρ m = Ee (I, II)

nz nρ m + Eh (I, II)
nz nρ m + Eg HgS (23)

1

τ
n′zn′ρ m′ (I, II)
nz nρ m

=
1

τ
e (I, II)
nz nρ m

+
1

τ
h (I, II)
nz nρ m

, (24)

which do not take into account the electron–hole
Coulomb interaction, considering it as such that does
not affect the obtained results qualitatively. From the
figure, one can see that the energies of exciton states
depend weakly on the barrier dimensions in both cases
of a quantum wire and a quantum well, while their
lifetimes grow exponentially as the barrier thickens. It
turned out that, despite the barrier dimensions, both
the energies and lifetimes of the ground quasi-stationary
state of excitons in a QW are greater than those in a
quantum well (E110(I)

110 > E
110(II)
110 , τ

110(I)
110 > τ

110(II)
110 ).

However, it is not so for excited states. In particular, one
can see that E

210(I)
110 > E

210(II)
110 , but τ

210(I)
110 < τ

210(II)
110 .

Thus, the general conclusion is that the spectral
characteristics and lifetimes of the quasiparticles,
although having qualitatively similar dependences on
the geometrical parameters of the nanosystem, differ
considerably by value, depending on the dimensionality
of the space, into which the quasiparticles can escape
from the same open QD.

Since the exciton states of the Breit–Wigner type
turned out to be well localized in the space of a QD, they

would possess a sufficient lifetime (about picoseconds) to
be observed experimentally.
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СПЕКТРИ I ЧАСИ ЖИТТЯ ЕЛЕКТРОНА, ДIРКИ
ТА ЕКСИТОНА У ВIДКРИТИХ ЦИЛIНДРИЧНИХ
КВАНТОВИХ ТОЧКАХ, ЩО РОЗТАШОВАНI
У КВАНТОВИХ ДРОТАХ АБО КВАНТОВИХ ЯМАХ

М.В. Ткач, О.М. Маханець, А.М. Грищук

Р е з ю м е

Теоретично дослiджено спектри i часи життя електронiв, дiрок
та екситонiв у вiдкритих цилiндричних квантових точках, що
розташованi в рiзних середовищах: у цилiндричному квантово-
му дротi i в плоскiй квантовiй ямi, якi, в свою чергу, перебува-
ють у масивному тривимiрному середовищi. Розрахунок спек-
трiв та часiв життя виконано у наближеннi ефективних мас
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та прямокутного потенцiалу. Розв’язується рiвняння Шредiн-
гера з використанням умов неперервностi хвильової функцiї та
потоку густини ймовiрностi на всiх межах подiлу наногетероси-
стем. Отримано аналiтичний вираз для матрицi розсiяння (S-
матрицi). Дiйсна частина полюсiв S-матрицi визначає енергiю

квазiстацiонарного стану, уявна — його пiвширину, а вiдповiдно
i час життя квазiчастинки в цьому станi. Числовi розрахунки
спектрiв та часiв життя електрона, дiрки i екситона викона-
но для наногетеросистем на основi напiвпровiдникiв β-HgS i
β-CdS.
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