O. P. Dovhopiatyi E. O. Sevost'yanov (Zhytomyr, Ukraine)

ON BOUNDARY DISTORTION ESTIMATES OF MAPPINGS IN DOMAINS WITH POINCARE INEQUALITY

Let $Q: \mathbb{R}^n \to [0, \infty]$ be a Lebesgue measurable function that vanishes outside D. In view of [section 7.6,1], we will say that the mapping $f: D \to \overline{\mathbb{R}^n}$ is a ring Q-mapping at the point $x_0 \in \overline{D}$ with respect to p-module, $x_0 \neq \infty$, $p \geqslant 1$, if there is $r_0 = r(x_0) > 0$ such that for arbitrary $0 < r_1 < r_2 < r_0$ the following inequality holds

$$M_p(f(\Gamma(S(x_0, r_1), S(x_0, r_2), D))) \leqslant \int_A Q(x) \cdot \eta^p(|x - x_0|) dm(x), \quad (1)$$

where $\eta:(r_1,r_2)\to[0,\infty]$ is an arbitrary non-negative Lebesgue-dimensional function such that

$$\int_{r_1}^{r_2} \eta(r) dr \geqslant 1. \tag{2}$$

Given [section 7.22,2], we say that the borel function $\rho \colon D \to [0,\infty]$ is the upper gradient for $u \colon D \to \mathbb{R}$, if the inequality $|u(x) - u(y)| \leqslant \int\limits_{\gamma} \rho \, |dx|$ is satisfied for all the smooth curves γ , connecting the points x and $y \in D$. We say that in the domain D the Poincare inequality $(1;p), p \geqslant 1$, holds if there exist constants $C \geqslant 1$ and $\tau > 0$ such that for each ball $B \subset D$, of an arbitrary bounded continuous function $u \colon D \to \mathbb{R}$ and each of its upper gradients ρ holds

$$\frac{1}{m(B)} \int_{B} |u(x) - u_B| \, dm(x) \leqslant C \cdot (\operatorname{diam} B) \left(\frac{1}{m(\tau B)} \int_{\tau B} \rho^p(x) \, dm(x) \right)^{1/p} ,$$

where $u_B := \frac{1}{m(B)} \int_B u(x) \, dm(x)$. A domain D is called Ahlfors regular, if there exists a constant $C \geqslant 1$ such that for every $x_0 \in D$ and any $R < \operatorname{diam} D$ the inequalities $\frac{1}{C}R^n \leqslant m(B(x_0,R) \cap D) \leqslant CR^n$ holds. Let $A,B \subset \mathbb{R}^n$. Let's put diam $A = \sup_{x,y \in A} |x-y|$, dist $(A,B) = \inf_{x \in A,y \in B} |x-y|$.

For $\delta > 0$ and $p \ge 1$, the domains $D, D' \subset \mathbb{R}^n$, $n \ge 2$, $x_0 \in \partial D$, continuum $A \subset D$ and the Lebesgue measurable function $Q: D \to [0, \infty]$ denoted by $\mathfrak{F}_{Q,A,\delta}^{p,x_0}(D,D')$ the family of all ring Q-homeomorphisms f of D onto D' at the point x_0 with respect to the p-module, satisfying the condition diam $(f(A)) \ge \delta$. The following result is obtained.

Theorem 1. Let $x_0 \in \partial D$, $x_0 \neq \infty$, n-1 . Assume that <math>D' is a regular Alfors bounded domain with (1;p)-Poincare inequality, and the following conditions are satisfied: 1) there exists $r'_0 = r'_0(x_0) > 0$ such that the set $B(x_0, r) \cap D$ is connected for all $0 < r < r'_0$; 2) there exists $\delta_0 = \delta_0(x_0) > 0$ such that.

$$\int_{\varepsilon}^{\delta_0} \frac{dt}{t^{\frac{n-1}{p-1}} q_{x_0}^{\frac{1}{p-1}}(t)} < \infty \qquad \forall \quad \varepsilon \in (0, \delta_0) \,, \qquad \int_{0}^{\delta_0} \frac{dt}{t^{\frac{n-1}{p-1}} q_{x_0}^{\frac{1}{p-1}}(t)} = \infty \,. \tag{3}$$

Then every $f \in \mathfrak{F}_{Q,A,\delta}^{p,x_0}(D,D')$ has a continuous extension to the point x_0 , in addition, there are $\varepsilon_0 > 0$ and $\widetilde{C} > 0$, such that for all $x, y \in B(x_0, \varepsilon_0) \cap D$, $|x - x_0| \geqslant |y - x_0|$, and for all $f \in \mathfrak{F}_{Q,A,\delta}^{p,x_0}(D,D')$ is valid next evaluation

$$|f(x) - f(y)| \leqslant \widetilde{C} \cdot \left(\int_{|x-x_0|}^{\varepsilon_0} \frac{dt}{t^{\frac{n-1}{p-1}} q_{x_0}^{\frac{1}{p-1}}(t)} \right)^{1-p} . \tag{4}$$

REFERENCES

- 1. Martio O., Ryazanov V., Srebro U. and Yakubov E. Moduli in Modern Mapping Theory. New York: Springer Science + Business Media, LLC, 2009.
- 2. Heinonen J. Lectures on Analysis on metric spaces. New York: Springer Science+Business Media, 2001.