Vladimir Gol'dshtein (Beer Sheva, Israel) Evgeny Sevost'yanov (Zhytomyr, Ukraine) Alexander Ukhlov (Beer Sheva, Israel)

ON THE THEORY OF GENERALIZED QUASICONFORMAL MAPPINGS

Let us give the basic definitions. Let Γ be a family of paths γ in \mathbb{R}^n . A Borel function $\rho: \mathbb{R}^n \to [0,\infty]$ is called *admissible* for Γ if $\int_{\gamma} \rho(x)|dx| \geqslant 1$

for all (locally rectifiable) paths $\gamma \in \Gamma$. In this case, we write: $\rho \in \operatorname{adm} \Gamma$. Given a number $q \geqslant 1$, q-modulus of the family of paths Γ is defined as $M_q(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_D \rho^q(x) \, dm(x)$. Let $x_0 \in \overline{D}$, $x_0 \neq \infty$, then

$$B(x_0, r) = \{ x \in \mathbb{R}^n : |x - x_0| < r \},\,$$

$$A = A(x_0, r_1, r_2) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\}.$$

Given sets $E, F \subset \overline{\mathbb{R}^n}$ and a domain $D \subset \mathbb{R}^n$, we denote $\Gamma(E, F, D)$ a family of all paths $\gamma : [a, b] \to \overline{\mathbb{R}^n}$ such that $\gamma(a) \in E, \gamma(b) \in F$ and $\gamma(t) \in D$ for all $t \in (a, b)$.

Let $Q: \mathbb{R}^n \to [0, \infty]$ be a Lebesgue measurable function. We say that f satisfies the Poletsky inverse inequality with respect to q-modulus at a point $y_0 \in f(D)$, $1 < q < \infty$, if the moduli inequality

$$M_q(\Gamma(E, F, D)) \leqslant \int_{A(y_0, r_1, r_2) \cap f(D)} Q(y) \cdot \eta^q(|y - y_0|) \, dm(y) \tag{1}$$

holds for any continua $E \subset f^{-1}(\overline{B(y_0,r_1)}), F \subset f^{-1}(f(D) \setminus B(y_0,r_2)),$ $0 < r_1 < r_2 < r_0 = \sup_{y \in f(D)} |y - y_0|,$ and any Lebesgue measurable function $\eta: (r_1,r_2) \to [0,\infty]$ such that

$$\int_{r_1}^{r_2} \eta(r) \, dr \geqslant 1 \, .$$

Let D, D' be domains in \mathbb{R}^n , $n \geq 2$. For numbers $1 \leq q < \infty$ and a Lebesgue measurable function $Q : \mathbb{R}^n \to [0, \infty]$, Q = 0 a.e. on $\mathbb{R}^n \setminus D'$, we denote be $\mathfrak{R}_Q^q(D, D')$ the family of all open and discrete mappings $f : D \to D'$ such that the moduli inequality (1) holds at any point $y_0 \in D'$.

Theorem. Let $Q \in L^1(\mathbb{R}^n)$ and $q \ge n$. Suppose that, K is compact in D, and D' is bounded. Then there exists a constant $C = C(n, q, K, ||Q||_1, D, D') > 0$ such that the inequality

$$|f(x) - f(y)| \le C_n \cdot \frac{(\|Q\|_1)^{\frac{1}{q}}}{\log^{\frac{1}{n}} \left(1 + \frac{r_0}{2|x - y|}\right)}, \ r_0 = d(K, \partial D),$$

holds for any $x, y \in K$ and $f \in \mathfrak{R}_Q(D, D')$, where $||Q||_1$ denotes the L^1 -norm of the function Q in \mathbb{R}^n .