Evgeny Sevost'yanov Zarina Kovba Heorhii Nosal Nataliya Ilkevych (Zhytomyr, Ukraine)

ON ONE ANALOG OF NÄKKI THEOREM FOR NON-CONFORMAL MODULI

Let us give some definitions. A Borel function $\rho : \mathbb{R}^n \to [0, \infty]$ is called admissible for family Γ of paths γ in \mathbb{R}^n , if $\int_{\gamma} \rho(x) |dx| \ge 1$ holds for any

(locally rectifiable) path $\gamma \in \Gamma$. In this case, we write: $\rho \in \operatorname{adm} \Gamma$. Given $p \geqslant 1$, we define p-modulus of the family Γ by the equality $M_p(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma_{\mathbb{R}^n}} \int_{\mathbb{R}^n} \rho^p(x) \, dm(x)$. Set $M(\Gamma) := M_n(\Gamma)$. Let $E_0, E_1 \subset \overline{\mathbb{R}^n}, \overline{\mathbb{R}^n} = \mathbb{R}^n \cup \mathbb{R}^n$

 $\{\infty\}$, and let D be a domain in $\overline{\mathbb{R}^n}$, $n \ge 2$. Set $M(\Gamma) = M_n(\Gamma)$. Denote by $\Gamma(E_0, E_1, D)$ the family of all paths joining E_0 and E_1 in D. The following result was established by R. Näkki (see [1, Lemma 1.15]).

Theorem A. (The positivity of the modulus of families of paths joining a pair of continua). Let D be a domain in \mathbb{R}^n , $n \geq 2$. If A and A^* are (nondegenerate) continua in D, then $M(\Gamma(A, A^*, D)) > 0$.

We have proved Näkki's result to the case of a modulus of order $p \ge 1$. The following theorem holds.

Theorem A_1 . Let D be a domain in \mathbb{R}^n , $n \ge 2$, and let p > n - 1. If A and A^* are (nondegenerate) continua in D, then $M_p(\Gamma(A, A^*, D)) > 0$.

Let $p \ge 1$ and let D be a domain in \mathbb{R}^n , $n \ge 2$. We say that ∂D is strongly accessible at the point $x_0 \in \partial D$ with respect to p-modulus, if for any neighborhood U of x_0 there is a compact set $E \subset D$, a neighborhood $V \subset U$ of x_0 and a number $\delta > 0$ such that $M_p(\Gamma(E, F, D)) \ge \delta$ for each continuum F in D with $F \cap \partial U \ne \emptyset \ne F \cap \partial V$.

Theorem B. Let D be a domain in \mathbb{R}^n , $n \geq 2$, which has strongly accessible boundary at the point $x_0 \in \partial D \setminus \{\infty\}$ with respect to p-modulus, p > n - 1. Then D is finitely connected at the point x_0 , in other words, for any neighborhood U of x_0 there exists a neighborhood $V \subset U$ of the same point such that $V \cap D$ has a finite number of components.

REFERENCES

1. Näkki, R. Boundary behavior of quasiconformal mappings in n-space, Ann. Acad. Sci. Fenn. Ser. A. **484**, 1–50 (1970).