Pogorui A. Sarana O. Franovskii A. (Zhytomyr, Ukraine)

RIEMANN ZETA FUNCTION OF A VARIABLE FROM COMMUTATIVE ALGEBRA

Abstract. We introduce and study the extension of the Riemann zeta function to commutative algebras with identity.

Suppose \mathbb{A} is a d-dimensional commutative algebra over a field $\mathbb{K} = \mathbb{R}$ (or \mathbb{C}) with a basis e_1, e_2, \ldots, e_d and e_1 is the identity of \mathbb{A} .

Suppose A has non-trivial idempotents $i_1, i_2, ..., i_d$ such that $i_k i_m = 0$, $k \neq m$, and $\sum_{k=1}^d i_k = 1$.

Denote by $I_m = \{ai_m | a \in \mathbb{A}\}$ the principal ideal generated by i_m , $m = 1, \ldots, d$. It is easily seen that \mathbb{A} can be decomposed in the direct sum (the Pierce decomposition)

$$\mathbb{A} = I_1 \oplus I_2 \oplus \ldots \oplus I_d.$$

Lemma 1. Idempotents i_1, i_2, \ldots, i_d are linearly independent.

Lemma 2. If $b \in I_m$ then there exists $k \in \mathbb{K}$ such that $b = ki_m$, i.e., the ideal I_m can be represented as follows $I_m = \{ki_m | k \in \mathbb{K}\}.$

Theorem 1. For any $a \in \mathbb{A}$ we have the following decomposition

$$a = \sum_{m=1}^{d} k_m i_m, \quad k_m \in \mathbb{K}.$$

It is easily verified that $a^l = \sum_{m=1}^d k_m^l i_m$.

Let us define $a \in \mathbb{A}$ power of a natural number.

For $a = \sum_{m=1}^{d} k_m i_m$ and $n \in \mathbb{N}$, we have

$$n^{a} = \exp(a \ln n) = \sum_{l=0}^{\infty} \frac{a^{l} (\ln n)^{l}}{l!} = \sum_{m=1}^{d} \sum_{l=0}^{\infty} \frac{k_{m}^{l} (\ln n)^{l}}{l!} i_{m} = \sum_{m=1}^{d} n^{k_{m}} i_{m}.$$

The zeta function of $a \in \mathbb{A}$ variable

For $a = \sum_{m=1}^{d} k_m i_m$

$$\zeta(a) = \sum_{n=0}^{\infty} n^{-a} = \sum_{n=0}^{\infty} \sum_{m=1}^{d} n^{-k_m} i_m = \sum_{m=1}^{d} \sum_{n=0}^{\infty} n^{-k_m} i_m = \sum_{m=1}^{d} \zeta\left(k_m\right) i_m.$$

Conclusion.

If $\mathbb{K} = \mathbb{R}$ the zeta function has only the trivial zeros at points $k_m = -2l_m$, $l_m \in \mathbb{N}$, m = 1, 2, ..., d.

If $\mathbb{K} = \mathbb{C}$ the A algebra Riemann hyposesis is as follows:

Non-trivial zeros of the zeta function of variable $a \in \mathbb{A}$ are located at $a = \frac{1}{2} + i\Sigma$, where $\Sigma = \sum_{m=1}^{d} \sigma_m i_m$, m = 1, 2, ..., d and $\frac{1}{2} + i\sigma_m$ is zero of the complex zeta function $\zeta(z)$.

REFERENCES

- 1. Rochon D., A Bicomplex Riemann Zeta Function. Tokyo J.Math. Vol. 27, No. 2, 2004.
- 2. Reid F. L., Van Gorder, A Multicomplex Riemann Zeta Functions. Adv. Appl. Clifford, 23, Iss. 1, (2003), 237-251.
- 3. Pogorui A., Hyperholomorphic Functions in Commutative Algebras. Complex variables and elliptic equations, Vol. 52, Iss. 12, (2007), 1155 1159.