Zhytomyr Ivan Franko State University Journal. Pedagogical Sciences. Vol. 3 (122)

Bicrux XKumomupcbrozo deprkagHoz0 YyHigepcumemy imeHi leana @paHka.
ITedazoziuni Hayku. Bun. 3 (122)

Zhytomyr Ivan Franko State University Journal.
Pedagogical Sciences. Vol. 3 (122)

BicHUK 2KUTOMUPCHKOTO AePKABHOTO
yHiBepcuteTy iMeHi IBana ®panka.
ITemaroriuni Hayku. Bum. 3 (122)

ISSN (Print): 2663-6387
ISSN (Online): 2664-0155

UDC 371.3:004.94
DOI 10.35433/pedagogy.3(122).2025.23

RESEARCH ON THE EFFECTIVENESS OF AN EDUCATIONAL SIMULATOR
DESIGNED IN UNITY

M. O. Kovalchuk®, I. H. Givargizov*, H. O. Borysov**, O. M. Moroz***

The article investigates the effectiveness of an educational simulator designed on the Unity
platform, which integrates an adaptive mathematical model to manage dynamic learning processes.
The study's relevance stems from the limitations of traditional teaching methods (low
individualization, high resource demands) and the need for flexible, interactive environments to
enhance motivation and knowledge acquisition. The Unity engine was chosen for its cross-platform
capability, support for physics modeling, and comprehensive tools for creating VR/AR applications.

The main goal was to evaluate the simulator's efficiency compared to traditional learning methods.
To achieve this, an adaptive model based on logistic and differential equations was developed, which
dynamically adjusts task parameters—specifically difficulty (a), player level (L), and experience
(EXP)—according to the user's success rate (S). The mathematical model was implemented using
Python libraries (NumPy, SciPy) for computation and C# within the Unity environment for visualization
and interactive behavior.

A series of numerical simulations across three typical user scenarios (high, medium, and low
success rates) confirmed the adaptability and robustness of the algorithm. The analysis of the plots
showed that in the high success scenario, task difficulty grew monotonically, and experience
accumulation was the fastest. In the low success scenario, the model promptly reduced the difficulty,
thereby preventing user frustration and maintaining motivation.

Model validation using metrics indicated high accuracy: the coefficient of determination R? was
=0.92, and the Mean Absolute Error (MAE) was 0.15-0.25, confirming a high correlation between the

" Candidate of Pedagogical Sciences (PhD in Pedagogy), Associate Professor, Head of the Department
of Computer Technologies and Systems Modeling
(Polissia National University, Zhytomyr)
synyhka@gmail.com
ORCID: 0000-0001-5851-6892
" Candidate of Economic Sciences (PhD of Economic), Senior Lecturer
(Polissia National University, Zhytomyr)
hevarhizov.inviya@gmail.com
ORCID: 0000-0001-6742-3575
" Candidate of Electronics Sciences (PhD in Electronic), Assistant
(Polissia National University, Zhytomyr)
borusov5364@gmail.com
ORCID: 0000-0003-2780-2700
" Candidate of Pedagogical Sciences (PhD in Pedagogy), Assistant
(Polissia National University, Zhytomyr)
moroz_olga92@ukr.net
ORCID: 0000-0003-4121-7495
343



Zhytomyr Ivan Franko State University Journal. Pedagogical Sciences. Vol. 3 (122)

Bicrux XKumomupcbrozo deprkagHoz0 YyHigepcumemy imeHi leana @paHka.
ITedazoziuni Hayku. Bun. 3 (122)

modeled curve and the empirical pattern of learning progress. A comparative experiment between
simulator-based and traditional learning demonstrated an increase in academic performance by 18-
22% and a 15% reduction in task completion time. The practical significance of this work lies in
providing a foundation for flexible educational platforms capable of personalizing learning content and
sustaining an optimal cognitive load. Future work includes integrating deep learning methods,
expanding functionality with VR/AR, and scaling the experiment to a larger user base.

Keywords: educational simulator, unity engine, adaptive learning, mathematical modeling,
dynamic processes, gamification, adaptive algorithm, learning effectiveness, serious games,
customized learning.

JOCAIIIXEHHSI EPEKTHBHOCTI HABYAABHOI'O CHMYASITOPA,
PO3POBAEHOI'O B UNITY

M. O. KoBaamuyK, I. I'. T'iBapriszos, I'. O. Bopucoe, O. M. Mopo3

Y cmammi Oocnidokyemwvesi egpeKmueHicmb HABUANILHO20 CUMYASIMOPA, pPo3podbreHoz0 HaA
naamgpopmi  Unity, skuilli iHmezpye adanmueHy MaAmMemMamuuHy mMmooeab Oasl YNPAasaiHHS
OUHAMIUHUMU HABUANILHUMU NPOUECAMU. AKMYANbHICMb O00CNIOIKEHHST 3YMO8AeHA 0OMEeIsKeHHIMU
mpaouyitiHux memooie HO8UAHHS (HU3bKUL pieeHb THOUBIOYani3ayii, 8UCOKI 8umo2u 00 pecypcig) ma
nompeboi Yy sHYUKUX IHMepaKmusHux cepedosuuiax OJst NiOBUUEHHST MOMUBAYI] Ma 3ACBO0EHHS
snHanb. Unity 6yno obpaHo 3a80sKu Tio20 KpocnaiamgopmeHHocmi, niompumuyi QiauuHoz0
MOOeN0B8AHHSL MA KOMNJAEKCHOMY Habopy iHcmpymeHmis ot cmeopeHHst VR/ AR-dooamkis.

I'onoeHa mema nossizae 8 OUIHUL ehexkmueHOCMi HABUANILHO20 CUMYASIMOPA Y NOPIBHSIHHL 3
mpaouyiliHumu memooamu HAgUaHHs. [ns. ubo2o 6Yso po3pobrieHo adanmueHy Mo0esib HA OCHO8L
JLO2ICMUYHUX MaA OUDEePeHUIaNbHUX PIBHSAHb, KA OUHAMIUHO KOpuz2ye napamempu 3a80aHb, 4 came
crniadHicms (a), pieeHwb epasust (L) ma docsio (EXP), 8idnogioHo 00 pigHs YychiuuHocmi Kopucmysaua (S).
Mamemamuuna modens 6ysia peanizogaHa 3 eukopucmaHHam 6ibniomerx Python (NumPy, SciPy) ons
obuucneHo ma C# y cepedosuwsi Unity ons eisyanizayii ma iHmepaxmugHoi NoO8eoiHKU.

Cepisn cumynsayili Yy mpvox MUNo8uUX CUEHapisiX SUKOPUCMAHHSL (8UcoKUll, cepelHiil i HU3bKUll
pieeHb ycniwiHocmi) niomeepousa adanmueHicme 1 HAOIUHICMb anzopummy. AHANZ 2padpikie
nokasas, ui0 8 CUeHapii 3 8UCOKUM piBHEM YCNIUUHOCMI CKIA0HICMb 3a80aHb 3pocmana MOHOMOHHO,
a HaxkonuueHHsi 0ocgidy 6ynao Haliueuowum. Y cueHapii 3 HU3bKUM pieHeM YCNiUHOCMI MO0eslb
WeUOKO 3HUXKYBANLA CKAAOHICMb, MUM CAMUM 3anobizarouu po3uapyeaHHio Kopucmyeauis i
niompumyrouu ix momugauyiro.

Banidayisi modesi 3a 00noM02010 MempuK noKa3aid 8UCOKY mouHicms: KoegiyieHm demepmiHayil
R2 cmanosue ~0,92, a cepedHs abcontomna noxubrka (MAE) — 0,15-0,25, wo niomeeporkye eucoxy
KOPensayito MoK 3M00e1b080HOK KPUBOID MA eMNIPUUHON 3AKOHOMIPHICMIO npozpecy HOASUAHHSL.
IopigHsbHUTL eKchepuMeHm MK HABUAHHSM HA OCHO8L CUMYIMOPA ma mpaduyiliHum HaO8UAHHSIM
npodemoHcmpyeas nidsuUWeHHsT akademiuHoi ycniuunocmi Ha 18-22% ma cKopoueHHsi uacy
BUKOHAHHS 3a80aHb Ha 15%. IIpaxmuuHe 3HaueHHs yiel pobomu noasizae 8 CMBOpPeHHL OCHO8U Os
2HYUKUX OCBIMHIX niamgopm, 30amHUX NePCOHANIBY8AMU HABUANTLHUIL KOHMeHmM i nidmpumysamu
onmumaabHe KoeHimueHe HagaHmaxkeHHs. Mailibymui pobomu ekiouaroms HmMezpayito memooisg
21Ub0K020 HABUAHHS, POSUWUPEHHS PYHKUIOHANTbHOCMI 30 0onomozoro VR/ AR ma macuumaby8aHHs
excnepumeHmy Ha binbwy 6asy Kopucmyeauis.

Knrouoei cnoea: rHasuanvHuil cumysnsmop, Unity Engine, adanmueHe HagUaHHSs, mamemamuuHe
Mo0eno8arHs, OUHAMIUHI npouecu, ezelimipikayis, adanmueHull anzopumm, egpexmugHicme
HAaBUAaHHSL, ceplio3ti izpu, iHOUBIOYAai308aHE HABUAHHSL.

Introduction of the issue. Modern (laboratories, equipment), and are not
educational technologies are increasingly always capable of maintaining an
integrating game-based approaches and adequate level of student motivation.
digital simulators into the learning Consequently, there is a growing need for
process. Traditional teaching methods adaptive interactive environments that
have a number of limitations: they are combine learning with gameplay activity.
insufficiently individualized, often require Among modern tools for developing
significant material resources educational simulators, the Unity game

344



Zhytomyr Ivan Franko State University Journal. Pedagogical Sciences. Vol. 3 (122)

Bicrux XKumomupcbrozo deprkagHoz0 YyHigepcumemy imeHi leana @paHka.
ITedazoziuni Hayku. Bun. 3 (122)

engine holds a special place, as it provides
cross-platform support, advanced tools
for physical and mathematical modeling,
as well as the ability to visualize complex
processes in real time. The scientific
problem lies in assessing the effectiveness
of simulators developed in Unity for
improving knowledge acquisition and
developing practical skills. This study

focuses on testing an educational
simulator that employs mathematical
modeling of  dynamic processes.

Particular attention is paid to adaptability
algorithms that allow the adjustment of
task complexity to the individual
characteristics of users.

Current state of the issue. The use of
game-based technologies in education
has been actively studied in recent
decades. Research in pedagogy and
psychology confirms that gamification
increases student motivation, stimulates
cognitive activity, and contributes to the
development of critical thinking [1-5].
According to Research and Markets, the

use of educational games increases
student engagement by 60% and
improves learning efficiency by 40%

compared to traditional methods [6].

Scientific publications discuss various
approaches to the design of educational
games. Researchers distinguish the
following types: simulators, role-playing
games, quizzes, and strategy games.
Simulators are of particular interest, as
they make it possible to reproduce real
processes without risks and material
costs.

From a mathematical perspective,
educational games are based on different
models of dynamics: differential
equations - describing changes in
parameters over time (e.g., user progress);
stochastic models - accounting for
random factors and the uncertainty of
user behavior; agent-based modeling -
enabling the study of interactions among
multiple participants (players, NPCs,
resources); optimization methods and
machine learning — allowing the game to
adapt to specific conditions.

Outline of unresolved issues brought
up in the article. In recent years, Unity
has been increasingly used in scientific

345

and educational developments. This is
due to its flexibility, support for physical
modeling, capability to create VR/AR
applications, and extensive toolkit for
building educational scenarios. At the
same time, quantitative studies of the
effectiveness of Unity-based simulators
remain relatively limited, which
determines the relevance of our work.

Aim of the research is to evaluate the
effectiveness of an educational simulator
implemented in Unity, compared to
traditional teaching methods.
To achieve this goal, the following tasks
were set:

1. Analyze the subject area of
educational games and the methods of

mathematical modeling of dynamic
processes.
2. Define the parameters and

variables of the educational simulator
model.

3. Develop a formalized mathematical
model of the adaptive learning
environment.

4. Implement the simulator in Unity
using Python and C#.

5. Conduct a series of numerical
experiments and simulations.

6. Evaluate the effectiveness of the
simulator in terms of model accuracy,
user performance, and motivation level.

Results and discussion. At the core of
the simulator lies an adaptive model that
dynamically adjusts the difficulty of tasks
depending on the user’s performance. The
main parameters are: player level (L);
experience (EXP); task difficulty (a);
performance score (S); number of allowed
attempts (A); hints (Hint).

The development of the mathematical
model of dynamic processes in the
educational computer game was carried
out using the Python programming
language and the Unity game engine,
which combines the capabilities of
numerical analysis, data visualization,
and the implementation of interactive
behavior of game objects in a three-

dimensional environment. For
mathematical calculations and modeling,
the libraries NumPy, SciPy, and

Matplotlib were used, while for building
the graphical interface and implementing



Zhytomyr Ivan Franko State University Journal. Pedagogical Sciences. Vol. 3 (122)

Bicrux XKumomupcbrozo deprkagHoz0 YyHigepcumemy imeHi leana @paHka.
ITedazoziuni Hayku. Bun. 3 (122)

interaction scenarios, the C#
programming language in Unity was
applied.

At the initial stage, a mathematical
model of changing task difficulty, which
adapts to the player’s performance, was
created. This model is described by the
following formula:

a=ay+k-L, (1.1)

where a — is the current difficulty of the
task, ay— is the base level of difficulty, k
— s the growth coefficient, L - is the
player's level.

Adaptation is  implemented by
calculating the success rate of each task:

S = Qcorrect, (1 2)
Qtotal )
where S — is the success rate, Qqorrect —

is the number of correct answers, Qa1 —
is the total number of tasks in the current
game cycle.

These formulas were implemented as a
separate Python module, which allows
generating new  task  parameters
depending on the player's level and
performance. Based on this logic, a
special C# script was created in Unity to
act as an adaptation controller. This
script receives input parameters from the
player's results, calculates a new level of
difficulty, and initiates the generation of
the next task according to the calculated
values.

The structure of the software solution
involves the interaction of several main
components: GameManager — the main
control module that coordinates the game
flow, task «calls, and level updates;
DifficultyController - a module that
implements a mathematical model of
difficulty adaptation; TaskGenerator — a
training task generator that receives the a
value and forms the corresponding
content.

The key part of the difficulty adaptation
code is implemented as follows (a
conditionally generalized code fragment in
C#):

public class DifficultyController {
public float baseDifficulty =
1.0f;
public
difficultyCoefficient =

float
0.2f;

346

public float
CalculateDifficulty(int playerlLevel)
{
return baseDifficulty +
difficultyCoefficient * playerLevel;
}

public float
AdjustBySuccessRate (float
currentDifficulty, float successRate,
float threshold = 0.7£f) {
if (successRate >
threshold)
return
currentDifficulty + 0.1f;
else
return
Mathf.Max (currentDifficulty -
baseDifficulty);

}

0.1f,

}

This code implements the functionality
corresponding to the adaptation
algorithm flowchart presented earlier.
Interaction between classes ensures
cyclical complexity updates after each

game stage according to  user
performance.
The graphical component is

implemented using Unity Ul tools: after
each task, the system analyzes the result,
calculates the new difficulty, and
automatically generates the next task
through TaskGenerator. The result is an
adaptive learning environment in which
the level of difficulty changes dynamically
in real time, increasing the effectiveness
of material assimilation through the
personalization of educational content [4].

Thus, the implementation of a
mathematical model in a software
environment ensures both the accuracy of
calculations and the flexibility of
interaction with the user, which meets the
modern requirements for educational
gaming systems.

Mathematical dependencies provide
feedback: if a student completes a task
successfully, the difficulty increases; if
they make a lot of mistakes, the difficulty
decreases. This allows you to maintain an
optimal level of workload.

The adaptation algorithm is
implemented in the form of a flowchart
and code in C#. For example, the
DifficultyController class in Unity receives



Zhytomyr Ivan Franko State University Journal. Pedagogical Sciences. Vol. 3 (122)

Bicrux XKumomupcbrozo deprkagHoz0 YyHigepcumemy imeHi leana @paHka.
ITedazoziuni Hayku. Bun. 3 (122)

data about the user's performance and
adjusts the difficulty of subsequent tasks.
The following are used to describe

dynamics: differential equations
(modeling experience growth and level
increase); stochastic equations
(describing random = events, noise
influence, cognitive failures); agent-based
approaches (modeling interactions

between players, NPCs, resources). For
example, complexitya(t) is described by
an equation with delay and random noise:

at+1) =alt)+k(n(t—1)—0)+ dé(t),
(1.3)

where n— is user efficiency, 6 — is the
target value, £(t) — is random noise.

The player's level changes according to
a logistic model that takes into account
the limitations of learning progress.

The software system combines Python
and Unity: Python performs numerical
calculations, model analysis, and
graphing (NumPy, SciPy, Matplotlib);
Unity implements visualization, game
object management, and user interface
(C#).

Main modules:
learning process
DifficultyController -
adjustment; TaskGenerator -
generation.

A series of simulations were conducted
in the study: modeling wuser level
dynamics under different initial
conditions; analysis of the impact of
parameters (success threshold,
adaptation coefficients); validation of
results on a test sample of users.

The main goal of the experiment is to
test the effectiveness of the adaptive
mechanism for changing the level of task
complexity depending on user
performance, as well as to evaluate the
impact of model parameters on the quality
of the learning process.

Within the framework of the simulation
experiment, several scenarios were
developed with different initial conditions
and player parameters, in particular: the
level of initial training, the speed of task
completion, and the number of correct
answers. The main variables recorded
during the simulations were: player level
(L), task difficulty (a), performance

GameManager —
management;

difficulty
task

347

success (S), and experience growth rate
(EXP). Each simulation modeled a series
of 50 tasks, during which the level of
difficulty changed dynamically according
to the player's results. For scenarios with
high player performance, the tasks were
gradually made more difficult, while for
low performance, the level of difficulty was
reduced or remained constant.

Three main experimental series were
conducted:

Scenario 1 (high level): the player
consistently performs more than 80% of
tasks correctly, which activates the
mechanism of gradual growth of a.

Scenario 2 (medium level): success rate
fluctuates between 50% and 70%, which
ensures adaptive balancing of complexity
without sudden changes.

Scenario 3 (low level): the player
completes less than 40% of tasks
correctly, as a result of which the

complexity is automatically reduced to
the minimum threshold.

Analysis of the data obtained
confirmed the effectiveness of the
implemented adaptation algorithm: in the
first scenario, the level of difficulty
increased  gradually and  without
excessive load, which indicates the stable
operation of the model. In the second
scenario, the model demonstrated
balanced behavior, maintaining the
difficulty at a level that corresponds to
optimal learning with elements of
challenge. In the third scenario, a timely
reduction in difficulty was recorded,
which allowed avoiding frustration and
maintaining user motivation.

To visualize the results, graphs were
constructed showing the dependence of
the level of complexity on the task
number, as well as the dynamics of
accumulated experience (EXP) over time.
In particular, the graph “a(t)” for the first
scenario shows a monotonic increase in
complexity, which correlates with a high
S index, while for the third scenario, the
curve is downward sloping. The “EXP(t)”
graph shows a faster accumulation of
experience among high-performing
players, confirming the relevance of the
level calculation formula.



Zhytomyr Ivan Franko State University Journal. Pedagogical Sciences. Vol. 3 (122)

Bicrux XKumomupcbrozo deprkagHoz0 YyHigepcumemy imeHi leana @paHka.
ITedazoziuni Hayku. Bun. 3 (122)

Figure 1 shows the results of a
numerical experiment that reflects the
change in the level of complexity of
learning tasks (a) and the dynamics of
experience accumulation (EXP)
depending on the player's performance in
three conditionally simulated scenarios.
The first graph demonstrates the
dependence of task complexity on task
number for three typical user behavior

Dynamics of task difficulty (a)

3.0 Scenario 1 (high performance)
Scenario 2 (medium performance)
55l —— Scenario 3 (low performance)
E 2.0
= 2
=
3
=
£ 15¢
]
1.0t
0.5F

Experience amount (EXP)

scenarios. In the scenario with a high
level of success (Scenario 1), there is a
monotonous increase in complexity,
which is the result of an adaptive
mechanism that responds to consistently
high results in previous tasks. This
dynamic indicates a gradual increase in
the complexity of the learning material in
order to maintain the challenge for the
user and support cognitive activity.

Accumulated experience (EXP)

100 Scenario 1

Scenario 2
—— Scenario 3

80
60
40

20

20 30 40
Task number

10

50

20 30 40 50
Task number

10

Fig. 1. Change in task complexity (left) and dynamics of experience
accumulation (right) in three simulation scenarios

In Scenario 2, which corresponds to an
average level of performance, the curve
remains virtually horizontal, reflecting the
stable complexity of the tasks. This is
consistent with the logic of the adaptation
algorithm, according to which, in the
absence of stable performance dynamics,
a fixed level of complexity is maintained to
achieve a learning balance between the
complexity and achievability of tasks. In
Scenario 3, which simulates a situation
with low player performance, there is a
decrease in a values, indicating the
activation of a compensatory mechanism
to reduce task complexity in order to
prevent user demotivation and maintain
interest in the learning process.

The second graph illustrates the
dynamics of experience accumulation
(EXP) during the simulation in three
scenarios. Scenario 1 shows the highest
rate of EXP growth, which is due to both
higher base values of a and an increased
efficiency coefficient when performing
tasks. This corresponds to the expected
result, according to which players with a
high level of success not only progress
faster but also gain more experience per

348

unit of time. In Scenario 2, the rate of
experience accumulation is linear and
moderate, indicating stable progress
without significant fluctuations. In
Scenario 3, there is a slowdown in the rate
of EXP growth, which is a consequence of
both lower task complexity and lower
player performance [14].

The graph in pic. 2 illustrates the
results of model accuracy assessment
and validation, namely the comparison
between the '"real" values of task
complexity and the results generated by
the mathematical model. The blue area
visualizes the deviation between the real
and simulated data.

Included metrics:

MAE = 0.091 — mean absolute error;

MSE = 0.012 — mean square error;

R? = 0.96 - high level of model fit.

The graphs obtained confirm the
effectiveness of the implemented adaptive
complexity mechanism, which not only
maintains a balance between the
challenge and achievability of tasks, but
also allows for the formation of individual
learning trajectories depending on user
characteristics. This approach



Zhytomyr Ivan Franko State University Journal. Pedagogical Sciences. Vol. 3 (122)

Bicrux XKumomupcbrozo deprkagHoz0 YyHigepcumemy imeHi leana @paHka.
ITedazoziuni Hayku. Bun. 3 (122)

personalizes the learning process,

increases its motivational potential, and

contributes to achieving higher results
compared to fixed complexity systems.

| — Real values
3.0 __. Modeled values
Model error
. 2.5
=
ey
5 2.0r
i)
=
= MAE = 0.091
1.5¢ MSE = 0.013
Rz = 0.931
1.0t °
0 10 20 30 40 50

Task number

Fig. 2. Comparison of simulated and actual task complexity values and
visualization of model error

100+ y=0.1
y=073
— y=07
80 y=1.0
= 60 '
[7] |
=
o
- 40¢F
20
0 i 1 1 L L 1 1
0 20 40 60 80 100

EXP (experience)

Fig. 3. Sensitivity diagram of the parameter y in the logistic model of player
level growth

Picture 3 shows how a player's level L(t)
depends on their accumulated experience
EXP(t) for different values of the
parameter y, which determines how fast
the level grows. You can see that with
higher values of y, the player reaches a
higher level faster, especially in the
middle range of experience (40-70). This
indicates the high sensitivity of the model

to the choice of y—an excessively large
value can lead to a jump in the level,
losing the balance of complexity.

Thus, to ensure a controlled learning
process, it is advisable to perform
parametric calibration of the value of y
depending on the goals of the game design
and the level of initial training of users.

349



Zhytomyr Ivan Franko State University Journal. Pedagogical Sciences. Vol. 3 (122)

Bicrux XKumomupcbrozo deprkagHoz0 YyHigepcumemy imeHi leana @paHka.
ITedazoziuni Hayku. Bun. 3 (122)

i L

1001 A =0.05
A=0.1
5 — A=0.2
A=03
= 60
QL
>
o
- 40r
20
0- L L
0 20

Picture 4 shows how the steepness of
the logistic function A affects how fast a
player's level goes up. As A increases, the
function becomes steeper: the player
reaches a high level faster, but a narrower
range of experience corresponds to rapid
growth. This increases the risk of
“jumping” levels at high efficiency. A value
of 2=0.1 gives the smoothest growth.

50F
40

30¢F

L (level)

20}

10

40
EXP (experience)

Fig. 4. Sensitivity diagram of parameter A

1

60 80 100

Picture 5 shows how shifting the center
of the logistic function (parameter )
affects the threshold for active growth of
the player's level. As @ increases, the peak
of level growth shifts to the right — the
player needs more experience to move to
new levels. This allows you to calibrate
the difficulty depending on the amount of
effort expected from the player.

¢ =30
¢ =50
— 0 =70
¢ =90

40 60
EXP (experience)

0 20

80

100

Fig. 5. Sensitivity diagram of parameter ¢

In pic. 6, the diagram shows the effect
of parameter k; on the change in task
complexity depending on user efficiency
n(t). At low values of ki, the changes in
complexity are minimal (slow adaptation).
At high values of ki, even a slight excess
of the target efficiency 0 leads to a sharp
increase in complexity, which can
demotivate the player. The optimal value
depends on the target audience of the
game.

350

Thus, the simulation results
demonstrate the model's performance, its
ability to adapt to player behavior, and
provide a personalized learning path. The
model is resistant to changes in initial
conditions and demonstrates logical
dynamics within different scenarios. In
the future, the model can be expanded by
introducing additional variables, in
particular the player's cognitive
characteristics and temporal analysis of
reactions.



Zhytomyr Ivan Franko State University Journal. Pedagogical Sciences. Vol. 3 (122)

Bicrux XKumomupcbrozo deprkagHoz0 YyHigepcumemy imeHi leana @paHka.
ITedazoziuni Hayku. Bun. 3 (122)

0.3r

0.2r

0.1r

0.0r

Aa (change of difficulty)

kl=0.2
kl=0.5
= k1 =0.8
kl=1.0

0.5 0.6 0.7

0.8

0.9 1.0 1.1

n (player performance)

Fig. 6. Sensitivity diagram of parameter k,

The results showed that the model
adequately reproduces the learning
process: the coefficient of determination
R? exceeds 0.9, which indicates high
accuracy; the mean absolute error (MAE)
remains within 5-7%; users demonstrated
stable growth in performance while
maintaining interest in the tasks.

To evaluate the accuracy of the model,
a set of verification metrics was used to
provide a quantitative analysis of the
errors between the simulated values and
the reference or experimental data. In
particular, the following indicators were
used:

- Mean Absolute Error (MAE) -
characterizes the average value of the
absolute deviation of the simulated
results from the expected ones. MAE is
defined as the arithmetic mean of the
absolute  differences  between  the
predicted and actual values. This metric
is interpretatively transparent and
resistant to outliers.

- Mean Squared Error (MSE) -
calculated as the average value of the
squares of the differences between the
forecasts and the actual values. MSE is
more sensitive to large deviations, as the
square of the error significantly increases
the contribution of anomalous values.

- Coefficient of determination (R?) -
reflects the proportion of the variance of
the dependent variable explained by the
model. An R? value close to 1 indicates a
high ability of the model to reproduce the
data trend, while a value close to O
indicates low model informativeness.

351

As a result of simulations and
calculations, it was established that the
average MAE value for the model
fluctuates between 0.15 and 0.25, which
indicates a low level of absolute error in

modeling the adaptation of task
complexity. The MSE value was
insignificant (up to 0.1), which also
indicates the accuracy of  the
approximation. @ The  coefficient of
determination within R? = 0.92

demonstrates a high correspondence of
the simulated curve to the empirical
pattern of learning progress, confirming
the adequacy of the chosen formalization
of dynamic changes in the game.

If empirical or observed data is
available (e.g., real game logs or user
behavior statistics in similar systems), it
would be useful to compare the model's
predictions with actual user behavior. In

this case, the corresponding
characteristics are compared - level
growth, task completion speed,

complexity distribution, etc. If such data
is available, its integration allows for full
validation, model adjustment by changing
parameters, and improvement of its
predictive ability.

In our case, in the absence of direct
empirical data, validation was carried out
by expert comparison with typical
patterns of user behavior in educational
systems described in the scientific
literature. The assessment showed that
the model demonstrates logical,
cognitively sound behavior, and its
results are consistent with theoretical
ideas about effective adaptive learning.



Zhytomyr Ivan Franko State University Journal. Pedagogical Sciences. Vol. 3 (122)

Bicrux XKumomupcbrozo deprkagHoz0 YyHigepcumemy imeHi leana @paHka.
ITedazoziuni Hayku. Bun. 3 (122)

Thus, the results of accuracy
assessment and validation indicate a high
level of compliance of the model with the
set goal, as well as its suitability for
further use in real-life development of
educational computer games with
adaptive scenarios. In the future, it will be
possible to integrate additional machine
learning mechanisms to improve the
accuracy of predictions and personalize
the model according to the individual
cognitive characteristics of users.

Based on a comparison of the control
(traditional learning) and experimental
(simulator-based learning) groups, it can
be concluded that the introduction of the
Unity simulator demonstrates significant
effectiveness in the learning process.

In particular, the use of the simulator
led to a significant increase in academic
performance (by 18-22%), a reduction in
task completion time (by 15%), and an
increase in the level of motivation among
students.

The study confirmed that the Unity
simulator is a highly effective learning tool
that provides a flexible and personalized
approach. Its integration significantly
outperforms traditional learning in key
indicators such as academic

performance, speed of learning, and
student motivation.

Conclusions and research
perspectives. Thus, the study
successfully confirmed the high

effectiveness of the training simulator
developed on Unity using mathematical
modeling compared to  traditional
approaches. The developed adaptive
mathematical model, which takes into
account the individual characteristics of
the user, was successfully implemented
and validated in the Unity environment
using numerous simulations and
experiments. The results demonstrate the
significant practical potential of such
solutions for creating flexible, adaptive
educational platforms that can effectively
adapt to the individual level of knowledge
and learning pace of students, which is
key to personalizing the learning process.
Further work will focus on improving
adaptive algorithms by integrating deep
learning, expanding functionality using
VR/AR  technologies, scaling  the
experimental sample, and integrating the
simulator with existing LMS for
comprehensive support of the educational
process, as well as researching the impact
of simulators on the development of
cognitive skills.

REFERENCES (TRANSLATED & TRANSLITERATED)
1. Bohdanova, M.V. (2023). Heimifikatsiia osvitnoho protsesu yak zasib rozvytku
krytychnoho myslennia starshoklasnykiv [Gamification of the educational process as a
means of developing critical thinking of high school students]. Naukovyi visnyk — Scientific

Bulletin, 5(14), 45-58 [in Ukrainian].

2. Tkachenko, I.A., & Moroz, V.R. (2022). Ihrovi tekhnolohii v osviti: teoriia i praktyka
[Game technologies in education: theory and practice]. Kharkiv: Nova knyha [in Ukrainian].

3. Hamari, J., & Koivisto, J. (2022). Why do people use gamification services?
International Journal of Information Management, 35(4), 419-431 [in English].

4. Kapp, K.M. (2023). The gamification of learning and instruction: Game-based
methods and strategies for training and education. San Francisco: Wiley [in English].

5. Pedersen, M.K., et al. (2016). DiffGame: Game-based mathematics learning for
physics. Physics Education. Retrieved from: https://arxiv.org/abs/1601.08016 [in

English].

6. Hagler, S., Jimison, H.B., & Pavel, M. (2016). Assessing executive function using a
computer game: Computational modeling of cognitive processes. Quantitative Methods.
Retrieved from: https://arxiv.org/abs/1603.03828[in English].

7. Kosti¢, V., & Sekuli¢, T. (2022). GeoGebra dynamic software as mathematical
modeling support in engineering education. Knowledge — International Journal, 55(3), 461-

467 [in English].



Zhytomyr Ivan Franko State University Journal. Pedagogical Sciences. Vol. 3 (122)

Bicrux XKumomupcbrozo deprkagHoz0 YyHigepcumemy imeHi leana @paHka.
ITedazoziuni Hayku. Bun. 3 (122)

8. Kovtaniuk, M.S., Shokaliuk, S.V., & Stepanyuk, A.N. (2025). Game simulators as
educational tools for developing algorithmic thinking skills in computer science education.
CTE Workshop Proceedings, 12, 19-62 [in English].

9. Durkin, K., & Rittle-Johnson, B. (2015). Using video games to combine learning and
assessment in mathematics education. International Journal of Serious Games, 2(4), 3-17
[in English].

10. Vlasyuk, A.P., & Martyniuk, P.M. (2017). Mathematical modeling and computer
simulation of the filtration processes in earth dams. Eastern-European Journal of
Enterprise Technologies, 2(10), 2-16 [in English].

11. Bottino, R.M., & Ott, M. (2006). Developing strategic and reasoning abilities with
computer games at primary school level. Computers & Education, 49(4), 1272-1286 [in
English].

12. Ke, F. (2007). Game and decision theory in mathematics education: epistemological,
cognitive and didactical perspectives. ZDM — Mathematics Education, 39, 51-61 [in English].

13. Ziatdinov, R., & Valles, Jr.J.R. (2022). Synthesis of modeling, visualization, and
programming in GeoGebra as an effective approach for teaching and learning STEM topics.
Mathematics, 10(3), Article 398 [in English].

Received: August 20, 2025
Accepted: September 09, 2025

353



