

THE POTENTIAL OF INNOVATIVE LEARNING TECHNOLOGIES IN PRESERVING THE EDUCATOR'S PROFESSIONAL HEALTH

Olena Antonova

Doctor of Pedagogical Sciences, Professor, Head of the Department of Professional-Pedagogical, Special Education, Andragogy and Management, Zhytomyr Ivan Franko State University, <https://orcid.org/0000-0002-3240-6297>, e-mail: olena.antonova2015@gmail.com

Abstract:

Relevance. Dynamic societal transformations and the rapid digitalization of the educational space impose new requirements on the personality of the educator, who must demonstrate cognitive flexibility, mobility, and the ability to implement innovative technologies. However, the intensification of professional activity, conditioned by the transition to distance and blended learning, creates risks for the teacher's psycho-emotional and physical state. In this context, the issue of preserving professional health arises as critically important as a holistic phenomenon encompassing intellectual, physical, mental, spiritual, and social components.

Objective: to theoretically substantiate and reveal the potential of modern innovative pedagogical technologies as a means of intensifying the educational process while simultaneously preserving the lecturer's professional health amidst modern challenges.

Methods: analysis of psychological-pedagogical and regulatory-legal literature for the definition of the concepts "pedagogical technology" and "professional health"; a systemic approach for structuring health components; generalization and synthesis to identify the health-preserving potential of specific innovative methodologies.

Results. The article demonstrates that the educator's professional health is the foundation of their productive activity and adaptation to the technogenic environment. It has been established that the transition from traditional reproductive methods to innovative ones changes the teacher's role to that of a mentor-coordinator, which allows for the rational distribution of time resources and the reduction of emotional strain. The effectiveness of immersive technologies and video cases in increasing student motivation without additional energy-consuming pressure on the educator is substantiated. Methodologies for developing creativity are detailed, which, through the principle of psychological distancing, allow the specialist to find non-standard solutions to complex problems while maintaining mental comfort and intellectual reserve.

Conclusions. The implementation of innovative technologies is not only a requirement of the modern educational paradigm but also a necessary condition for maintaining the teacher's professional longevity. The use of interactive methods, visualization tools, and learning personalization algorithms allows for the creation of an ergonomic educational environment. This ensures the stable achievement of projected learning outcomes with minimum permissible errors, while simultaneously strengthening the adaptive resources of the educator's organism and their socio-psychological well-being. The harmonization of technological progress with health culture is defined as a key component of modern pedagogical mastery.

Keywords: pedagogical technology, professional health of the educator, innovations in education, health preservation, digitalization of education, professional burnout, creativity, psycho-emotional stability.

Introduction. Global societal requirements for the effectiveness of educational transformations and the rapid growth of activity determine a high level of social expectations

regarding the personal qualities and professional trajectory of the modern educator. In today's realities, a specialist must demonstrate high adaptability and mobility, which implies not only the operative mastery of the latest formats of learning organization, such as distance and mixed interaction, but also masterful possession of digital tools of the globalized space. The professional path of an educator today is accompanied by a complex of systemic challenges, dominated by the intensive integration of information technologies into the didactic process, the necessity of implementing inclusive principles in working with heterogeneous groups of learners, and adaptation to economic factors, including the need for constant updating of professional competencies.

At the same time, fulfilling the educator's fundamental mission regarding the transmission of knowledge and the formation of relevant 21st-century skills requires a fundamentally new approach to the implementation of innovations—an approach based on the principles of health preservation and complying with the requirements of Article 54 of the Law of Ukraine "On Education" regarding the provision of proper and safe working conditions. The successful implementation of technological innovations is possible only under the condition of conscious control over the psychophysiological state of all subjects of learning, which correlates with the norms of the Sanitary Regulations for general secondary education institutions regarding the limitation of continuous work with technical means to prevent visual and nervous fatigue.

Sources. The problem of health preservation of the young generation is relevant in domestic and foreign pedagogical science. Scientists investigate various aspects of the health preservation problem, namely: theoretical foundations of forming a health-preserving environment (O. Vashchenko, L. Deminska, O. Dubohai, L. Sushchenko); theoretical foundations of health-preserving technologies (N. Beseda, L. Horiana, L. Popova, and others); separate aspects of forming health-preserving competence (O. Antonova, L. Hrytsiuk, D. Voronin, A. Marushkevych, V. Serhiienko); value orientations toward a healthy lifestyle (S. Lapaienko, V. Orzhekhovska, A. Solohub); factors of forming a health-preserving educational environment in

general secondary and higher educational institutions (S. Dudko, V. Zviekova, O. Klestova, K. Ohloblin, and others). The results of these studies have found significant dissemination in pedagogical theory and practice. The present day presents new challenges in researching the problem of health preservation – the preservation of the professional health of the educator themselves.

The article is based on the premise that the application of innovative technologies in the educational process must be based on the principles of ecological compatibility, which are researched in detail in the works of O. Vashchenko (2017), A. Marushkevych (2024), N. Polishchuk (2013; 2020), N. Sydorchuk (2024), and O. Spirina (2021). Important is the idea that digitalization should act as a tool for reducing cognitive strain, rather than as an additional stress factor (Antonova, 2015; Marushkevych 2024). The flexibility of the lecturer should manifest in the ability to build an ergonomic environment, which, according to experts' recommendations, is a guarantee for the prevention of professional burnout and the preservation of mental well-being (Kuchynska, 2019; 2021). Thus, the harmonious integration of technological progress and health culture, reinforced by compliance with occupational health and safety regulations, becomes a mandatory component of modern pedagogical mastery, allowing for the achievement of high educational results without detriment to the somatic and mental state of educators and education learners.

Objective: to theoretically substantiate and reveal the potential of modern innovative pedagogical technologies as a means of intensifying the educational process while simultaneously preserving the lecturer's professional health amidst modern challenges.

Methods. To achieve the set goal, we applied a complex of theoretical methods: analysis of psychological-pedagogical and regulatory-legal literature for the definition of the concepts "pedagogical technology" and "professional health"; a systemic approach for structuring health components; generalization and synthesis to identify the health-preserving potential of specific innovative methodologies.

Results and discussion. The training of a modern specialist in any sphere of activity involves

students mastering the necessary tools for the development of their professional competence, creativity, critical thinking, and cognitive flexibility. After all, modern specialists need skills that allow them to think outside the box and find new solutions to complex problems. At the same time, the traditional approach to organizing the educational process does not always provide the necessary environment for the development of such skills.

New opportunities for higher education learners to develop their creative potential are opened by the introduction of modern learning technologies into the educational process, which change the thinking of educators and students, open new possibilities, and ensure the transition from passive knowledge acquisition to interactive learning through practical experience. The central idea here is the creation of a stimulating educational environment that directly facilitates the development of creativity, critical thinking, and the ability to solve complex problems.

Significant transformations in the educational sphere are also caused by the digitalization of modern life, stimulating the widespread use and integration of modern technologies, interactive, and innovative teaching methods in teaching and learning, changing the traditional educational environment. An important advantage of digitalization is the possibility of deep personalization of the learning process based on intelligent algorithms and machine learning, which allow adapting educational content to the unique pace and style of each learner. A special role is played by virtual and augmented reality technologies, which, through immersion and simulation of real scenarios, increase the effectiveness of mastering complex concepts. An additional factor in the intensification of learning becomes gamification and the use of mobile technologies, which significantly increase the level of motivation, engagement, and collaboration skills.

Given the rapid development of technologies and the need to prepare students for future professional activity, it is currently extremely important to understand the potential advantages and limitations of integrating modern technologies into the educational process.

The term "pedagogical technology" within psychological-pedagogical science is viewed

through the prism of several approaches: as a specific vector of didactics; as a technologically structured system of learning; as a set of teaching methods and strategies; as a process of transforming didactic systems through a detailed analysis of their structural components. Currently, scientific attention focuses on two leading functions of this phenomenon: the application of systemic theoretical knowledge to solve applied problems and the active implementation of technical tools into the educational environment. At the same time, depending on the target orientations and the sphere of implementation, two levels of this concept are distinguished: pedagogical technology proper and learning technology. In particular, the first level involves identifying patterns and ways to improve the educational environment, including the design of methodologies, development of materials, and analysis of their effectiveness; the second level is oriented toward modeling systems of mass professional training.

In a broad scientific sense, pedagogical technology is understood as a holistic method of designing, implementing, and monitoring the process of knowledge acquisition, which integrates technical capabilities and human potential to optimize learning (Honcharenko, 1997). The most common understanding of pedagogical technology (from the Greek *techne* – art, skill, and *logos* – teaching) is as an ordered set of forms, methods, and means of teaching and upbringing, which are systemically implemented in educational practice based on defined psychological-pedagogical concepts, allowing for the stable achievement of planned learning outcomes with minimum permissible errors (Vashchenko, 2017).

The modern educational paradigm, based on intensive societal transformations, imposes high demands on the mobility and technological literacy of the educator; however, the effective realization of these requirements is impossible without the preservation of their professional health. According to the concept of L.F. Kuchynska (2021, pp. 8-9), the professional health of pedagogical staff should be viewed as a complex characteristic that determines the specialist's ability to adapt to professional environment factors thanks to the organism's sufficient functional reserve. This well-being manifests through the integrity of intellectual,

physical, mental, social, and spiritual components, which collectively ensure not only productive activity but also the successful organization of the health-preserving process for education learners. The implementation of innovative technologies, particularly distance and blended learning, must occur taking into account the structure of this health, where the intellectual component actualizes motives and knowledge regarding safe work in the digital space, and the physical component ensures the morphofunctional resistance of the organism to technogenic loads.

In the context of the technologization of education, the mental component of professional health acquires special significance, determining mental comfort and the adequacy of the educator's behavioral reactions under conditions of information overload. Spiritual and social aspects, in turn, allow the specialist to maintain value-motivational stability and harmonious relationships with society, despite economic challenges or the need to master new competencies.

In the context of the above, technologies aimed at developing the educator's creativity, realizing their need for self-improvement and full professional self-realization acquire special significance. In the modern world, the role of the teacher, lecturer, or educator has changed significantly. They are no longer merely carriers of knowledge but become mentors who help learners navigate the information space, develop critical thinking, and social skills.

The modern educator is a comprehensively educated personality who knows how to flexibly change the direction and content of their professional activity, constantly works on their own development, raising their educational and cultural level. They are capable of independently acquiring the necessary knowledge, skills, and abilities, thinking critically, have a formed system of motives and social needs, and know how to act actively and creatively. Thus, the modern teacher is primarily a person oriented toward creative search, experiment, research, and innovation, and not toward the simple reproduction of ready-made knowledge.

That is, the key quality of an educator becomes their capacity for creative pedagogical activity. Pedagogical creativity is interpreted by researchers as a special approach to teaching and

upbringing, which involves non-standard solutions to educational tasks, novelty, innovations, and the adaptation of the learning process to the needs of students. And this requires the educator's ability to possess and effectively use innovative pedagogical technologies, to purposefully implement new, original methods, techniques, and means of teaching that radically change its quality, increase the motivation of education learners, and ensure better results, covering the entire educational process from goals to results, and including digital, project-based, person-centered, game-based, and other approaches that renew the education system.

Let us characterize some technologies that can be considered innovative and such that simultaneously contribute to the preservation of the educator's professional health. Thus, the following have proven to be sufficiently effective: case-study, flipped classroom, mind maps, the SCAMPER creativity development methodology, "Bus, Bed, Bath", STEM education technologies, and others.

We have identified case-study as one of the promising learning technologies. It forms independence of thinking in students, combines theoretical knowledge with practice, develops critical reflection, and skills in analysis and problem-solving. In the process of training future teachers, case-study involves the description and analysis of real pedagogical situations, which allows students to gain experience in professional task solving. They work with proposed situations (in printed form, on a computer, via video, or dramatization), determine the main problem, propose solution variants, and choose the most effective one. Cases always rely on real material or are as close as possible to real conditions, which ensures the practical value and relevance of learning.

Recently, the multimedia presentation of cases has become increasingly popular. It combines text information with video imagery and creates an effect of immersing students in the real conditions of a school lesson. This format performs several important functions: it shows a real situation, illustrates methodological aspects, and demonstrates variants of teacher behavior that can be critically analyzed to achieve better results. The application of video cases in learning makes it possible to: immerse students in typical professional problem situations; increase the efficiency of material mastery thanks to

active methods and visualization; easily integrate practical examples into curricula thanks to their concreteness and brevity; form practical skills directly in the auditorium; substantiate various theoretical concepts, as a video case does not contain ready-made answers; shift the emphasis from knowledge transmission to the development of competencies and skills; make classes more interesting through the use of game elements. Thus, a video case is an effective tool combining educational practice with modern multimedia capabilities.

The "Flipped Classroom" methodology is based on the premise that the main processing of new material occurs at home, while classroom time is devoted to practical assignments, laboratory works, exercises, and consultations. The experience of its application has shown that student motivation increases: they independently master a significant part of the information, and in classes, they actively interact with the lecturer and among themselves, forming a space for discussions.

In such a model, the role of the teacher changes: they become a mentor and coordinator of collective work, organize the joint resolution of educational problems, stimulate activity outside of lessons, have the opportunity to pay more attention to the individual needs of students, develop their own ICT skills, and overcome the problem of time shortage during the class.

Students, in turn, get the opportunity to learn at their own pace, use high-quality electronic resources, improve ICT competencies, and develop self-education and teamwork skills using modern gadgets as learning tools.

The SCAMPER creativity development methodology is aimed at developing creativity through the sequential application of different types of changes to a task or object. Its main idea lies in the fact that the new is often a successfully modified version of the already known. The main steps of the methodology: **Substitute** – change individual elements, materials, or ways of interaction (e.g., replace face-to-face communication with video content); **Combine** – connect with other subjects or activities (integrated lessons, excursions); **Adapt** – add new elements (exercises, methodologies, morning meetings, mood indicators); **Modify** – change the form or organization of the process (e.g.,

rearrange desks in the classroom); **Put to Other Uses** – use material or methodology in another context or lesson; **Eliminate** – remove the unnecessary, simplify to the main point (lesson without homework, double periods); **Reverse** – change the order or find the opposite application (e.g., use drawings from an art lesson to compose math problems). Thus, SCAMPER helps to systematically search for new solutions, stimulates a creative approach, and allows seeing familiar things from a different angle.

The "Bus, Bed, Bath" methodology is based on the fact that productive ideas can arise anywhere and anytime – in transport, at home, or during rest. Its essence lies not in the forced search for a solution "here and now," but in creating conditions under which thoughts surface by themselves. The application of the method implies a certain sequence of actions: immerse in the problem and clearly define it; temporarily distance oneself from searching for the answer; return to the problem with a fresh look; record the idea that has arisen and refine it. Such an approach allows delaying the final decision, engaging the subconscious in the work, and returning to the task later, from a different perspective. Psychological distancing makes the idea generation process less exhausting and more productive. The method becomes especially effective in combination with the case approach.

The methodology of applying mind maps is based on the position that the linear presentation of information in the form of text does not fully utilize the capabilities of our brain, as only its left hemisphere works. However, information is memorized better the larger the volume of the cerebral cortex connected to its perception. Students are offered to write a key concept in the center of the sheet, and write all associations that need to be remembered on branches going from the main word. Ideas can also be drawn. Creating such a map helps to invent new associations, and the image of the map is much better remembered. When working with maps, the cortex of the right hemisphere of the brain, responsible for the perception of visual and color images and creative activity, is additionally included. Thanks to this, visualized information is perceived much faster and remembered longer.

Conclusions. Summarizing the above, it can be stated that the systemic implementation of

innovative pedagogical technologies acts not only as an effective tool for intensifying the educational process but also as a fundamental factor in preserving the educator's professional health. The application of these methods directly contributes to strengthening all components of the specialist's health, ensuring a harmonious balance between the high demands of modern education and the functional reserves of the organism. Video case and mind map technologies optimize the work of the intellectual component, allowing for the structuring of large arrays of information and engaging both hemispheres of the brain, which significantly reduces cognitive load and prevents mental fatigue. The "flipped classroom" methodology radically transforms the role of the educator from a knowledge reproducer to a coordinator-mentor, which frees up classroom time for creative interaction and solves the problem of "time deficit," thereby stabilizing the emotional state and strengthening the mental component of health.

Of special significance for maintaining psycho-emotional comfort are the creative methodologies SCAMPER and "Bus, Bed, Bath". Using the principle of psychological distancing and delayed decision-making allows the educator to avoid the stress of "instant responsibility," connect subconscious resources, and generate non-standard ideas with less energy expenditure. This strengthens the spiritual and social components of professional health, stimulating the need for self-improvement and ensuring a high level of satisfaction with one's own work.

Thus, mastering modern innovative technologies allows the educator to transition from exhausting reproductive activity to flexible, creative experimentation. This not only increases the motivation and effectiveness of education learners but also creates an ergonomic professional environment that minimizes risks of emotional burnout, supports adaptive resources, and ensures the teacher's long-term professional longevity under conditions of dynamic societal changes.

List of references

Антонова, О.Є. (2015). Педагогічні технології та їх класифікація як наукова проблема. In *Сучасні технології в освіті. Ч. 1. Сучасні технології навчання : наук.-допом. бібліогр. покажч. Вип. 2*, (с. 8-15). Київ: НАПН України, ДНПБ України ім. В. О. Сухомлинського.

Ващенко, О. М. (2017). Методологічні засади підготовки майбутнього вчителя до використання здоров'язбережувальних освітніх технологій в навчально-виховному процесі початкової школи. *Оновлення змісту, форм та методів навчання і виховання в закладах освіти*, 17, 240-244. http://nbuv.gov.ua/UJRN/Ozfm_2017_17_65.

Гончаренко, С. (1997). Український педагогічний словник. Київ: «Либідь».

Кучинська, Л.Ф. (2021). Рекреалогічні засади збереження професійного здоров'я педагогічних працівників у системі методичної роботи закладів дошкільної освіти: автореферат. Кандидат наук. Житомир: Житомирський державний університет імені Івана Франка.

Кучинська, Л. Ф. (2019). Збереження професійного здоров'я педагогічних працівників закладів дошкільної освіти як наукова проблема. *American Journal of Fundamental, Applied & Experimental Research*, 3 (14), 30-34.

Марушкевич, А. (2024). Здоров'язбережувальні освітні технології в навчанні студентів: необхідність забезпечення. *Вісник Київського національного університету імені Тараса Шевченка. Серія «Педагогіка»*, 2(18). <https://doi.org/10.17721/2415-3699.2023.18.09>

Поліщук, Н. М. (2013). *Підготовка вчителя в системі післядипломної педагогічної освіти до розвитку здоров'язбережувальної компетентності учнів основної школи: автореферат*. Кандидат наук. Житомир: Житомирський державний університет імені Івана Франка. <https://doi.org/10.32843/2663-6085/2020/29-2.15>

Поліщук, Н.М. (2020). Розвиток культури здоров'я педагогів в умовах реформування освіти. *Інноваційна педагогіка*, 29 (2), 80-83.

Сидорчук, Н. Г. (2024). Здоров'язбереження: сучасні концептуальні орієнтири. *Вісник науки та освіти*, 12 (30), 1133-1142. <https://eprints.zu.edu.ua/id/eprint/42240>

Спірін О. М. (2021). Цифровізація освіти, освітнього процесу In *Енциклопедія освіти*, (с.1099-1100). Київ: Юрінком Інтер.

Translated & Transliterated

Antonova, O.Ie. (2015). Pedahohichni tekhnolohii ta yikh klasyfikatsiia yak naukova problema [Pedagogical technologies and their classification as a scientific problem]. In Suchasni tekhnolohii v osviti. Ch. 1. Suchasni tekhnolohii navchannia : nauk.-dopom. bibliogr. pokazhch. Vyp. 2, (с. 8-15) [Modern technologies in education. Part 1. Modern technologies of education: scientific-auxiliary bibliography index. Issue 2]. Kyiv: NAPN Ukraine, DNPB Ukraine im. V. O. Sukhomlynskoho [NAPS of Ukraine, V. O. Sukhomlynskyi National Academy of Sciences of Ukraine – Kyiv], [in Ukrainian]

Vashchenko, O. M. (2017). Metodolohichni zasady pidhotovky maibutnoho vchytelia do vykorystannia zdoroviazberezhuvallykh osvitnikh tekhnolohii v navchalno-vykhovnomu protsesi pochatkovoi shkoly [Methodological principles of training future teachers to use health-preserving educational technologies in the educational process of primary school]. Onovlennia zmistu, form ta metodiv navchannia i vykhovannia v zakladakh osvity [Updating the content, forms and methods of teaching and upbringing in educational institutions], 17, 240-244. http://nbuv.gov.ua/UJRN/Ozfm_2017_17_65, [in Ukrainian].

Honcharenko, S. (1997). Ukrainskyi pedahohichnyi slovnyk [Ukrainian pedagogical dictionary]. Kyiv: «Lybid», [in Ukrainian].

Kuchynska, L.F. (2021). Rekreationalichni zasady zberezhennia profesiinoho zdorovia pedahohichnykh pratsivnykiv u systemi metodychnoi roboto zakladiv doshkilnoi osvity: avtoreferat [Recreational principles of preserving the professional health of pedagogical workers in the system of methodological work of preschool educational institutions: abstract]. Kandydat nauk. Zhytomyr: Zhytomyrskyi derzhavnyi universytet imeni Ivana Franka, [in Ukrainian].

Kuchynska, L. F. (2019). Zberezhennia profesiinoho zdorovia pedahohichnykh pratsivnykiv zakladiv doshkilnoi osvity yak naukova problema [Preservation of professional health of pedagogical workers in preschool education institutions as a scientific problem]. American Journal of Fundamental, Applied & Experimental Research, 3 (14), 30-34, [in Ukrainian].

Marushkevych, A. (2024). Zdoroviazberezhuvalni osvitni tekhnolohii v navchanni studentiv: neobkhidnist zabezpechennia [Health-preserving educational technologies in student education: the need to ensure]. Visnyk Kyivskoho natsionalnogo universytetu imeni Tarasa Shevchenka. Seriia «Pedahohika» [Journal of the Taras Shevchenko National University of Kyiv. Series "Pedagogy"], 2(18). <https://doi.org/10.17721/2415-3699.2023.18.09>, [in Ukrainian].

Polishchuk, N. M. (2013). Pidhotovka vchytelia v systemi pisliadiplomnoi pedahohichnoi osvity do rozvytku zdoroviazberezhuvalnoi kompetentnosti uchニiv osnovnoi shkoly: avtoreferat [Teacher training in the system of postgraduate pedagogical education for the development of health-saving competence of primary school students: abstract]. Kandydat nauk. Zhytomyr: Zhytomyrskyi derzhavnyi universytet imeni Ivana Franka [Ivan Franko Zhytomyr State University], [in Ukrainian].

Polishchuk, N.M. (2020). Rozvytok kultury zdorovia pedahohiv v umovakh reformuvannia osvity [Development of a health culture of teachers in the context of educational reform]. Innovatsiina pedahohika [Innovative Pedagogy], 29 (2), 80-83. <https://doi.org/10.32843/2663-6085/2020/29-2.15>, [in Ukrainian].

Sydorchuk, N. H. (2024). Zdoroviazberezhennia: suchasni kontseptualni oriientyry [Health care: modern conceptual guidelines]. Visnyk nauky ta osvity [Bulletin of Science and Education], 12 (30), 1133-1142. <https://eprints.zu.edu.ua/id/eprint/42240>, [in Ukrainian].

Spirin O. M. (2021). Tsyfrovizatsiia osvity, osvitnoho protsesu [Digitalization of education, educational process]. In Entsyklopediia osvity [Encyclopedia of Education], (с.1099-1100). Kyiv: Yurinkom Inter, [in Ukrainian].

ПОТЕНЦІАЛ ІННОВАЦІЙНИХ ТЕХНОЛОГІЙ НАВЧАННЯ У ЗБЕРЕЖЕННІ ПРОФЕСІЙНОГО ЗДОРОВ'Я ПЕДАГОГА

Олена Антонова

доктор педагогічних наук, професор, завідувач кафедри професійно-педагогічної, спеціальної освіти, андрологіки та управління, Житомирський державний університет імені Івана Франка,
<https://orcid.org/0000-0002-3240-6297>, e-mail: olena.antonova2015@gmail.com

Реферат:

Актуальність. Динамічні суспільні трансформації та стрімка цифровізація освітнього простору висувають нові вимоги до особистості педагога, який має демонструвати когнітивну гнучкість, мобільність та здатність до впровадження інноваційних технологій. Проте інтенсифікація професійної діяльності, зумовлена переходом до дистанційного та змішаного навчання, створює ризики для психоемоційного та фізичного стану вчителя. У цьому контексті критично важливим постає питання збереження професійного здоров'я як цілісного феномена, що охоплює інтелектуальний, фізичний, психічний, духовний та соціальний компоненти.

Мета: теоретично обґрунтувати та розкрити потенціал сучасних інноваційних педагогічних технологій як засобу інтенсифікації освітнього процесу та одночасного збереження професійного здоров'я викладача в умовах сучасних викликів.

Методи: аналіз психолого-педагогічної та нормативно-правової літератури для дефініції понять «педагогічна технологія» та «професійне здоров'я»; системний підхід для структурування компонентів здоров'я; узагальнення та синтез для виявлення здоров'я збережувального потенціалу конкретних інноваційних методик.

Результати. У статті доведено, що професійне здоров'я педагога є основою його продуктивної діяльності та адаптації до техногенного середовища. Встановлено, що переход від традиційних репродуктивних методів до інноваційних змінює роль вчителя на наставника-координатора, що дозволяє раціонально розподіляти часовий ресурс та знижувати емоційну напругу. Обґрунтовано ефективність імерсивних технологій та відеокейсів у підвищенні мотивації студентів без додаткового енерговитратного тиску на педагога. Деталізовано методики розвитку креативності, які через принцип психологічного дистанціювання дозволяють фахівцеві знаходити нестандартні рішення складних проблем, зберігаючи при цьому душевний комфорт та інтелектуальний резерв.

Висновки. Впровадження інноваційних технологій є не лише вимогою сучасної парадигми освіти, а й необхідною умовою підтримання професійного довголіття вчителя. Використання інтерактивних методів, інструментів візуалізації та алгоритмів персоналізації навчання дозволяє створити ергономічне освітнє середовище. Це забезпечує стабільне досягнення прогнозованих результатів навчання з мінімально допустимими похибками, водночас зміцнюючи адаптаційні ресурси організму педагога та його соціально-психологічне благополуччя. Гармонізація технологічного прогресу з культурою здоров'я визначена як ключова складова сучасної педагогічної майстерності.

Ключові слова: педагогічна технологія, професійне здоров'я педагога, інновації в освіті, здоров'я збереження, цифровізація освіти, професійне вигорання, креативність, психоемоційна стійкість.

Received: 04 May 2025

Accept: 16 October 2025