Примиська С. О.ORCID: https://orcid.org/0000-0002-5832-0686, Сікора Я. Б.
ORCID: https://orcid.org/0000-0003-2621-6638, Катуніна О. С.
ORCID: https://orcid.org/0000-0001-7584-0037
(2025)
Optimization of Data Visualization Algorithms in Scalable Artificial Intelligence Systems.
In: International Conference on Next-Generation Innovations and Sustainability 2025, February 1th – April 1th, 2025, Poland.
С. 1–9.
DOI: 10.5281/zenodo.14929767.
1.pdf
Завантажити (140kB) | Preview
Анотація
The study explores the optimization of AI-driven data visualization algorithms to enhance scalability, interpretability, and computational efficiency. It examines dimensionality reduction techniques such as PCA, t-SNE, and UMAP, highlighting their role in improving data representation. Interactive frameworks like D3.js and Plotly enable real-time data exploration, while performance optimization strategies ensure responsiveness. Security concerns are addressed through encrypted data pipelines and federated learning. Cloud-based solutions enhance cross-platform adaptability. Future research should refine AI visualization techniques, develop standardized evaluation metrics, and improve security frameworks to ensure transparency and efficiency in AI-driven data interpretation and decision-making.
Тип ресурсу: | Доповідь на конференції або симпозіумі (Стаття) |
---|---|
Класифікатор: | Q Наука > QA Математика > QA76 Комп'ютерне програмне забезпечення |
Відділи: | Фізико-математичний факультет > Кафедра комп’ютерних наук та інформаційних технологій |
Користувач: | Ярослава Богданівна Сікора |
Дата подачі: | 13 Бер 2025 11:28 |
Оновлення: | 03 Серп 2025 07:34 |
URI: | https://eprints.zu.edu.ua/id/eprint/43038 |