Sevost’yanov Е. А., Ryazanov Vladimir (2013) On convergence and compactness of spatial homeomorphisms. ROMANIAN JOURNAL OF PURE AND APPLIED MATHEMATICS. Т. 18, № 1. С. 85–104.
Preview
Rrc13_1.pdf
Завантажити (345kB) | Preview
Анотація
Various theorems on convergence of general space homeomorphisms are proved and, on this basis, theorems on convergence and compactness for classes of the
so-called ring Q-homeomorphisms are obtained. In particular, it was established
by us that a family of all ring Q-homeomorphisms f in Rn �xing two points is
compact provided that the function Q is of �nite mean oscillation. These results
will have broad applications to Sobolev's mappings.
| Тип ресурсу: | Стаття |
|---|---|
| Ключові слова: | convergence, compactness, normality, homeomorphisms, moduli and capacity. |
| Класифікатор: | Q Наука > QA Математика > QA77 Математичний аналіз |
| Відділи: | Фізико-математичний факультет > Кафедра математичного аналізу, бізнес-аналізу та статистики |
| Користувач: | Ірина Ігорівна Таргонська |
| Дата подачі: | 14 Лист 2014 11:02 |
| Оновлення: | 15 Серп 2015 13:16 |
| URI: | https://eprints.zu.edu.ua/id/eprint/13998 |
| ДСТУ 8302:2015: | Sevost’yanov Е. А., Ryazanov Vladimir On convergence and compactness of spatial homeomorphisms. ROMANIAN JOURNAL OF PURE AND APPLIED MATHEMATICS. 2013. Т. 18, № 1. С. 85–104. |


